跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭靖軒
Ching-Hsuan Peng
論文名稱: 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發
指導教授: 林子軒
Tzu-Hsuan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 128
中文關鍵詞: 嵌入式系統結構健康監測MEMS加速度計鋼索監測
外文關鍵詞: Embedded system, Structural health monitoring, MEMS accelerometer, Cable monitoring
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在橋梁鋼索上廣泛設置系統監測去追蹤每一根鋼索的健康狀況,需要相當高的成本,因此為了能在橋樑上的鋼索大量布設感測器,本研究研發了基於低功耗嵌入式系統及高精度MEMS感測器的低成本鋼索監測裝置所構成之系統。此監測裝置基本架構包含了低功耗嵌入式系統、一顆高精度MEMS IMU、一顆高精度MEMS加速度計、一個24位元的MEMS ADC與LoRa無線傳輸模組。其運作模式為平時此系統會進入睡眠狀態,進行待命,當地震來時高精度IMU會喚醒系統進行量測,亦可利用敲擊方式喚醒。系統上的數位MEMS加速度計具有20Bit的解析度,可用來量測鋼索上的加速度,24位元的ADC配合電橋與應變計可用來量測鋼索的應變。本研究設計了一縮尺的實驗架構測試本系統的效能,實驗結果顯示本系統量測敲擊後鋼索的加速度,進行FFT分析後可轉換得到鋼索的力量,與實際的力量相比,本系統估測的誤差大約在5%以內,估測值與實際值具有良好的線性關係。黏貼在鋼索上的應變計所量測的應變值與鋼索力亦具良好的線性關係。在模擬鋼 索斷裂實驗,可以明顯看到,當構架上鋼索少了一根時,另一根鋼索 可以感受到明顯的變化,而在實際橋梁,如果遇到其中一根鋼索產生 預力損失時,其他鋼索力量也能明顯感受到變化。在鋼索自由振動實驗中,主要模擬加速度計感測器是否能夠利用地震後的微震來代替鋼索監測上所需要使用敲擊的方式,不僅可以節省人力,也可以監測地震後鋼索的健康度是否有造成影響,而在供耗的實驗中,以 10000mAh 的行動電源,低功耗感測版的睡眠模式可運作 19 年,在測量加速度 與應變也可以持續測量 1250 小時,足夠我們長時間進行監測鋼索。


    Deploying a monitoring system to monitor the health of each bridge cable requires a high cost. Therefore, this research developed a cable monitoring system based on low-power embedded systems and high-precision MEMS sensors. The underlying architecture includes a low-power embedded system, a high-precision MEMS IMU, a high-precision MEMS accelerometer, a 24-bit MEMS ADC, and a LoRa wireless transmission module. First of all, the system will go to sleep mode, when an earthquake occurred, the high-precision IMU will wake up the system for measurement, and it can also be waked up by tapping. The digital MEMS accelerometer on the system has a resolution of 20 Bit, which can be used to measure the acceleration on the steel cable, and the 24-bit ADC with the bridge circuit and strain gauge can be used to measure the strain of the steel cable. In this study, a scaled experimental frame was designed to test the effectiveness of the system. The experimental results show that the measured acceleration of the steel cable can estimate the cable force via FFT analysis. Compared with the real force, the error of estimated force is within 5%, and the estimated value has an excellent linear relationship with the actual value. The strain measured by the strain gauge attached to the steel cable also has an excellent linear relationship with the cable force. The experimental results also saw that when one steel cable is missing on the frame, the frequency of the other steel cable has visible change.

    中文摘要 i 英文摘要 iii 誌 謝 iv 目 錄 v 圖 目 錄 vii 表 目 錄 x 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3論文架構 3 二、理論背景與文獻回顧 4 2.1斜張橋原理 4 2.2鋼索橋動力影響 5 2.3橋梁及鋼索監測 6 三、研究方法 9 3.1鋼索振動與力學行為原理 9 3.1.1鋼索拉力量測方法 9 3.2監測系統架構 10 3.2.1系統架構 10 3.2.2硬體設計 12 3.2.3軟體設計 19 3.3實驗設計與規劃 24 3.3.1感測器校正實驗設計 24 3.3.2鋼索監測實驗設計與規劃 28 四、實驗結果分析與討論 48 4.1感測器校正 48 4.1.1加速度計校正 48 4.1.2應變計校正 52 4.2 鋼索監測實驗 57 4.2.1加速度計ADXL345和加速度計ADXL355比較 57 4.2.2不同尺寸鋼索監測分析結果 63 4.2.3模擬鋼索斷裂監測分析結果 81 4.2.4震後鋼索自由振動監測分析結果 96 4.2.5量測裝置供耗 108 第五章 結論與建議 110 參考文獻 111

    1. Drygala, I.J. and J.M. Dulinska, A theoretical and experimental evaluation of the modal properties of a cable-stayed footbridge. Procedia engineering, 2017. 199: p. 2937-2942.
    2. Krarup, N.H., Z. Zhang, and P.H. Kirkegaard, Active modal control of rain-wind induced vibration of stay cables. Procedia engineering, 2017. 199: p. 3158-3163.
    3. Straupe, V. and A. Paeglitis, Analysis of geometrical and mechanical properties of cable-stayed bridge. Procedia Engineering, 2013. 57: p. 1086-1093.
    4. Au, F., et al., On the determination of natural frequencies and mode shapes of cable-stayed bridges. Applied Mathematical Modelling, 2001. 25(12): p. 1099-1115.
    5. Keenahan, J., et al., The use of a dynamic truck–trailer drive-by system to monitor bridge damping. Structural Health Monitoring, 2014. 13(2): p. 143-157.
    6. 歐嘉宜、黃炯憲, 「斜張橋模態識別與非線性時域分析」, 交通大學,新竹市,(2007)。
    7. 向木生、劉志雄, 「大跨度預應力混凝土橋樑監測監控技術研究」,公路交通科技, 第19卷,第4期,第52頁-第56頁(2002).
    8. Koh, B. and S. Dyke, Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data. Computers & structures, 2007. 85(3-4): p. 117-130.
    9. Zhang, R.R. and L.D. Olson, Dynamic bridge substructure condition assessment with Hilbert-Huang transform: Simulated flood and earthquake damage to monitor structural health and security. Transportation research record, 2004. 1892(1): p. 153-159.
    10. Glišić, B., D. Posenato, and D. Inaudi. Integrity monitoring of an old steel bridge using fiber optic distributed sensors based on Brillouin scattering. in Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2007. 2007. International Society for Optics and Photonics.
    11. Cho, S., et al., Development of an automated wireless tension force estimation system for cable-stayed bridges. Journal of Intelligent Material Systems and Structures, 2010. 21(3): p. 361-376.
    12. 邱育政, 「依據高屏溪斜張橋實測結果探討鋼纜振動之研究」,逢甲大學,台中市,(2015)。
    13. Miley, D.C., Continuous cable tension monitor. 1975, Google Patents.
    14. Basak, D., Periodic non-destructive evaluation of steel wire ropes: its importance and practical relevance. The e-Journal of Nondestructive Testing, 2006. 11(6).
    15. Sumitro, S., A. Jarosevic, and M. Wang. Elasto-magnetic sensor utilization on steel cable stress measurement. in The First fib Congress, Concrete Structures in the 21th Century, Osaka. 2002.
    16. Wang, M.L., G. Wang, and Y. Zhao, Application of EM stress sensors in large steel cables, in Sensing issues in civil structural health monitoring. 2005, Springer. p. 145-154.
    17. Park, S.H., et al. Magnetic flux leakage sensing-based steel cable NDE technique incorporated on a cable climbing robot for bridge structures. in Advances in Science and Technology. 2013. Trans Tech Publ.
    18. Krešák, J., et al., Measurement of tight in steel ropes by a mean of thermovision. Measurement, 2014. 50: p. 93-98.
    19. 陳振華、林炳昌,「斜張橋斜拉索拉力檢測與安全評估」,技師期刊,第47期,第83頁-第92頁(2007)。
    20. Bedon, C., et al., Prototyping and validation of MEMS accelerometers for structural health monitoring—The case study of the Pietratagliata cable-stayed bridge. Journal of Sensor and Actuator Networks, 2018. 7(3): p. 30.
    21. Li, Y., et al. Vibrations monitoring for highway bridge using mm-Wave radar. in 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP). 2018. IEEE.
    22. 陳建州、吳文華、曾宏正、賴國龍、謝昱德, 「數位攝影量測技術應用於斜張鋼纜振態頻率識別之研究」,中國土木水利工程學刊,第22卷,第4期,第411頁-第421頁(2010)。
    23. Kim, S.-W., et al., Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge. Structural Health Monitoring, 2013. 12(5-6): p. 440-456.
    24. Zhang, G., et al., Study on the dynamic properties of a suspended bridge using monocular digital photography to monitor the bridge dynamic deformation. Journal of Civil Structural Health Monitoring, 2018. 8(4): p. 555-567.
    25. Seo, J., L. Duque, and J. Wacker, Drone-enabled bridge inspection methodology and application. Automation in Construction, 2018. 94: p. 112-126.
    26. Watters, D., Wireless sensors will monitor bridge decks. Better Roads, 2003. 73(2).
    27. 吳佳貞,「斜張橋鋼纜安全監測」,國立高雄大學: 高雄市,(2017)。

    QR CODE
    :::