| 研究生: |
陳姿蒨 Zih-Chien Chen |
|---|---|
| 論文名稱: |
以游離酵素促進土壤中氯酚化合物偶合反應之研究 Oxidative coupling of chlorophenols catalyzed by isolated enzymes |
| 指導教授: |
李俊福
Jiunn-Fwu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 183 |
| 中文關鍵詞: | Peroxidase 、Laccase 、氯酚化合物 、催化偶合 |
| 外文關鍵詞: | Peroxidase, Laccase, chlorophenols, oxidative-coupling |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氯酚化合物具頑抗、難分解之特性,常見處理方式有物理、化學、生物等,利用酵素去除氯酚被認為對環境較為友善。本研究藉由添加酵素至受氯酚污染土壤中,將小分子具毒性之氯酚化合物偶合成分子量大且特性穩定之產物。選取市售Peroxidase及Laccase分別與氯酚於水溶液及土壤中進行催化偶合反應,探討酵素活性、外在環境因子與反應時間對氯酚化合物去除之影響,並鑑定偶合產物及其相對產量。
研究結果發現以相同酵素活性催化偶合反應後,當土壤有機質含量越高時,土壤中氯酚剩餘濃度由高至低為:紗帽山>彰化表土>台中土>林口土。土壤含水率越高,對酵素催化偶合氯酚化合物有明顯助益。酵素催化土壤中氯酚化合物,所產生之偶合產物不盡相同,利用Laccase分別與含2,4-二氯酚及2,4,6-三氯酚之台中、紗帽山土反應所產生之偶合產物分子量皆為339.1(m/z),但因土壤中複雜之有機、無機質交互作用而使偶合產物相對產量與添加酵素活性並無相關趨勢,但其隨催化反應時間增長,氯酚濃度下降並伴隨偶合產物產生。
Peroxidase及Laccase催化氯酚化合物,可去除氯酚並同時產生偶合產物。添加不同酵素催化氯酚化合物時會產生多種不同之偶合產物,於酵素催化2,3,4,5-四氯酚及五氯酚水溶液會產生七種偶合產物。Peroxidase去除氯酚化合物之效率較Laccase高,酵素催化偶合同種氯酚化合物,在土壤所產生之偶合產物分子量不同於氯酚水溶液。
Chlorophenols (CPs) pollution of the soil has become a major concern. The pollution of soil has been treated using physical and chemical processes that have proven to be much more expensive. By changing the traditional methodology, biodegradation has been used as a new methodology in which enzymes are used (peroxidase and laccase) to promote oxidative-coupling reaction between recalcitrant organic pollutants (e.g. 2,4-DCP, 2,4,6-TCP, 2,3,4,5-TeCP, PCP) and soil organic matter (SOM), which produce stable incorporated polymers.
In this study, the soils from Shamao Mountain, Changhua topsoil, Linkou and Taichung were collected and studied. The soil organic matter (SOMs) was determined. The SOMs and reaction time will affect enzyme activity in the environment. 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and catalyzing in aqueous medium are the optimizations to find the best activity reaction conditions with enzyme. Dissociated enzymes on the oxidative-coupling reaction in the difference phase (water and soil) will be discussed. The presence of microorganisms and organic matter in the soil as a coupling product , can promote the coupling reaction. The chlorine monomer (CPs in the soil) can be transfered into dimers, trimers of macromolecular products, which are stable incorporated polymer.When the content of organic matter is higher, the residual concentration of chlorophenols are also higher. Additionally, the moisture(%) of soil favors for oxidative-coupling reaction, and the effect of removal of chlorophenol is as follows; 100%>60%>30%. Relative quantitiy of coupling products is different in sterilization and unsterilization. When samples 2,4-DCP and 2,4,6-TCP of Taichung.; Shamao Mountain are catalyzed by laccase, their products which molecular weight were the same (339.1m/z). The oxidative-coupling reaction in soil is complicated so the trends can’t be correlated. Taking advantage of enough activity, enzyme can reduce chlorophenols and produce lots of coupling products in the same time. The effect of catalysts to chlorophenols is observed as that peroxidase showed better activity than laccase. Moerover, if numbers of chlorine in chlorophenols is higher, it will be more difficulty to remove.
1. Mattson, Sante; WIklande, Lamberwt , “The Amphoteric Double Layer And The Double Ionic Exchange In Soils ”, Received 15th June, (1939)
2. 王俐涵,”以游離及固定化酵素促進氯酚化合物偶合反應之研究”,碩士論文,國立中央大學環境工程研究所,(2013)
3. 王一雄,”土壤環境污染與農藥”,文海環境科學叢書,初版,(1999)
4. Felbeck, G T , “Structural Chemistry of Soil Humic Substance ”, Adv Agron , 327-368, (1965)
5. Chiou, C T ; Kile, D E , “Water Solubility Enhancement of DDT and Trichlorobenzene by some surfactant Below and Above the Critical Micelle Concentration”, Environ Sci & Technol , Vol 23, No 7, p 832-838, (1989)
6. Stevenson, F J , “Humus Chemistry: Genesis, Composition, Reactions ”, John Wiley & Sons, Canada, (1994)
7. Bear(Ed ), F E , “Organic matter decomposition and formation of humic substances ”, Hemistry Of The Soil, ACS Monograph Series, No 160, p 258, (1964)
8. Stevenson, F J , Humus Chemistry, Wiley, New York, (1982)
9. Skjemstad, J ; Spouncer, L ; Cowie, B ; Swift, R , “Calibration of the Rothamsted organic carbon turnover model (RothC ver 26 3), using measurable soil organic carbon pools ”, Aust J Soil Res 42, 79-88 (2004)
10. Ikeya, K ; Sleighter, R L ; Hatcher, P G ; Watanabe, A , ” Fourier transform ion cyclotron resonance mass spectrometricanalysis of the green fraction of soil humic acids ”, Rapid Commun Mass Spectrom , 27, 2559–2568, (2013)
11. Zhai, G ; Lehmler, H J ; Schnoor, J L , “Inhibition of cytochromes P450 and the hydroxylation of 4-monochlorobiphenyl in whole poplar ”, Envion Sci Technol ,47, pp 6829–6835, (2013)
12. 林玲珠,”表面改質之多孔性吸附介質對特定污染物吸附之研究”,碩士論文,國立中央大學環境工程研究所,(2013)
13. Chiou, C T , “Partition and Adsorption of Organic Contaminants in Environmental Systems”, Hoboken, N J : Wiley-Interscience, (2002)
14. Chiou, C T ; Porter, P E ; Schmedding, D W , “Partition Equilibriaof Nonionic Organic Compounds between Soil Organic Matter and Water”, Environ Sci Technol , 17, 227-231, (1983)
15. Grathwohl, P , “Influence of Organic Matter from Soils and Sediments from Various Organicon the Sorption of Some Chlorinated Aliphatic Hydrocarbons : Implications on KocCorrelations”, Environ Sci Technol, 24, 1687-1693, (1990)
16. Murphy, E M ; Zachara, J M ; and Smith, S C , “Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds”, Environ Sci Technol , 24, 1507-1516, (1990)
17. Alexander, M , “Biodegradation and Bioremediation ”, Second Edition , (San Diego,California 92101–4495, USA) , (1999)
18. Bello, D ; Gil-Sotres, F ; Leirós, M C ; Trasar-Cepeda C , “Laboratory contamination with 2,4,5-trichlorophenol: effects onsome enzymatic activities in two forest and two agricultural soils of contrasting pH ” In: Trasar, C , Hernández, T , García, C ,Rad, C , González-Carcedo, S (Eds ), Soil Enzymology in the Recycling of Organic Wastes and Environmental Restoration Springer, Heildelberg, 219-229, (2011)
19. Angelucci, Domenica Mosca; Tomei, M Concetta, “Regeneration strategies of polymers employed in ex-situ remediation of contaminated soil: Bioregeneration versus solvent extraction ”, Journal of Environmental Management , 159, 169-177, (2015)
20. Rani, Sunita; Sud, Dhiraj, “Role of enhanced solar radiation for degradation of triazophos pesticide in soil matrix ”, Solar Energy 120, 494–504, (2015)
21. Hinojosa, M Belén; Carreira, José A ; Roberto García-Ruíz; Dick, Richard P , “Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils ”, Soil Biology and Biochemistry, Volume 36, Issue 10, 1559–1568, (2004)
22. Bello, Diana; Carmen Trasar-Cepeda; Leirós, M Carmen; Fernando, Gil-Sotres, “Modification of enzymatic activity in soils of contrasting pH contaminated with 2,4-dichlorophenol and 2,4,5-trichlorophenol ”, Soil Biology & Biochemistry 56, 80-86, (2013)
23. Diez, M C ; Gallardo, F ; Tortella, G ; Rubilar, O ; Navia, R ; Bornhardt, C , “Chlorophenol degradation in soil columns inoculated with Anthracophyllum discolor immobilized on wheat grains ”, Journal of Environmental Management 95, S83-S87, (2012)
24. Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli, “Remediation of p-nitrophenol and pentachlorophenol mixtures contaminated soil using pulsed corona discharge plasma ”, Separation and Purification Technology, 122, 17–23, (2014)
25. Hamid, Forootanfar; Mohammad, Mehdi Movahedniaa; Soheila, Yaghmaei; Minoosadat, Tabatabaei-Sameni; Hossein Rastegar; Armin Sadighi; Mohammad Ali Faramarzi , ”Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase ”, ournal of Hazardous Materials 209–210 ,199–203, (2012)
26. Abu-Ashour, J , Joy, D M ; Lee, Hung; Whiteley, H R ; Zelin, S , ” Transport of microorganisms through soil ”, Water Air Soil Pollut 75, 141-158 , (1994)
27. Anasonye, Festus; Winquist, Erika; Kluczek-Turpeinen, Beata; Räsänen, Markus; Salonen, Kalle; Steffen, Kari T ; Tuomela, Marja , “Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil ”, Chemosphere 110 , 85–90, (2014)
28. Arora, Pankaj Kumar ; Bae, Hanhong , ”Bacterial degradation of chlorophenols and their derivatives ”, Microb Cell Fact 13, 31 , (2014)
29. United States Environmental Protection Agency (US EPA), 〈http://www epa gov acess〉 (accessed12 12 2014)
30. Devi, P ; Saroha, A K , “Synthesis of the magnetic biochar composites for use asan adsorbent for the removal of pentachlorophenol from the effluent ”, Bioresour Technol 169, 525-531 , (2014)
31. Perry, R H ; Green, D W , Perry’s Chemical Engineers’ Handbook, 7thed, McGraw-Hill, (1997)
32. Hajslová, J ; Kocourek, V ; Zemanová ; I ; Pudil, F ; Davídek, J , “Gas chromatographic determination of chlorinated phenols in the form of various derivatives “, Journal of Chromatography A 439, 307-316, (1988)
33. 中華民國行政院環境保護署,土壤及地下水整治法,(2011)
34. Radhika, M ; Palanivelu, K , ”Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent-kinetics and isotherm analysis ”, J Hazard Mater , B 138, 116–124, (2006)
35. 行政院環保署,(2015)
36. 黃煥彰,失落的記憶,看 守台灣季刊,第四卷第二期,80-87,(2003)
37. Boyd, S A ; Shelton D R , “Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge ”, Appl Environ Microbial , Vol 272-277, (1984)
38. Viswanath, B ; Rajesh, B ; Janardhan, A ; Kumar A P ; Narasimha, G , “Fungal laccases and their applications in bioremediation ”, Enzyme Res 21, Article ID 163-242, (2014)
39. Dec, Jerzy; Haider, Konrad; Bollag, Jean-Marc, ”Release of substituents from phenolic compounds during oxidative coupling reactions ”, Chemosphere 52, 549–556, (2003)
40. Fukushima, M ; Okabe, R ; Nishimoto, R ; Fukuchi, S ; Sato, T ; Terashima, M , Adsorption of pentachlorophenol to a humin-like substance–bentonite complexprepared by polycondensation reactions of humic precursors Appl Clay Sci 87,136–141 , (2014)
41. Häggblom, M ; Valo, R J , “Microbial transformation and degradation of Toxic Organic Chemicals ”, Bioremediation of chlorophenol wastes , In:Young LY, Cerniglia CE (eds) JohnWiley & Sons, New York, pp 389–434, (1985)
42. Laine, M M ; Jørgensen, K S , “Effective and safe composting of chlorophenol contaminated soil in pilot scale ”, Environ Sci Technol 31, 371–378, (1997)
43. Miller, M ; Stratton, G ; Murray, G , “Effects of nutrient amendments and temperature on the biodegradation of pentachlorophenol contaminated soil ”, Water Air Soil Pollut 151, 87–101 (2004)
44. Fatima, K ; Imran, A ; Amin, I ; Khan, Q M ; Afzal, M , “Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil ”, Environ Sci Pollut Res 23:6188–6196, (2016)
45. Ghausul-Hossain S M ; McLaughlan, R G , ”Oxidation of Chlorophenols in Aqueous Solution by Excess Potassium Permanganate ”, Water Air Soil Pollut 223, 1429-1435 , (2012)
46. Muhammad Afzal; Qaiser M Khan; Angela Sessitsch, “Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants ”, Chemosphere 117, 232–242, (2014)
47. Andreozzi, Roberto; Caprio, Vincenzo; Insola, Amedeo; Marotta, Raffaele , ”Advanced oxidation processes (AOP) for water purification and recovery ”, Catalysis Today 53, 51–59, (1999)
48. Rashid, J ; Barakat, M A ; Mohamed, R M ; Ibrahim, I A , “Enhancement of photocatalytic activity of zinc/cobalt spinel oxides by doping with ZrO2 for visible light photocatalytic degradation of 2-chlorophenol in wastewater ” , Journal of Photochemistry and Photobiology A: Chemistry 284 1–7, (2014)
49. 黃瑞淵,電化學技術處理土壤及地下水中五氯酚之研究,博士論文,國立中興大學環境工程學系,(2014)
50. Rodgers, James D ; Jedral, Wojciech; Bunce, Nigel J , “Electrochemical Oxidation of Chlorinated Phenols ”, Environ Sci Technol , 33 (9), pp 1453–1457 , (1999)
51. Calace, N ; Nardi, E Petronio, B M ; Pietroletti, M , ”Adsorption of phenols by papermill sludges ”, Environ pollut , 118:315-519 , (2002)
52. Adewuyi, Adewale; Göpfert, Andrea; Adewuyi, Omotayo Anuoluwapo; Wolff, Thomas, “Adsorption of 2-chlorophenol onto the surface of underutilized seed of Adenopus breviflorus: A potential means of treating waste water ”, Journal of Environmental Chemical Engineering 4, 664–672, (2016)
53. Calace, N ; Nardi, E ; Petronio, B M ; Pietroletti, M , “Adsorption of phenols by papermill sludges ”, Environ pollut , 118:315-519 , (2002)
54. Klibanov, A M ; Tu; Scott, K P , ” Peroxidase-catalyzed removal of phenols from coal-conversion waste waters ”, Science, 221:259-261 , (1983)
55. Hou, Jian feng; Liu, Feixia; Wu, Nan; Ju, Jiansong; Yu, Bo , “Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline degrading Rhodococcus rhodochrous strain ”, Journal of Nanobiotechnology , 14:5, (2016)
56. Ma, Wei; Zong, Panpan; Cheng, Zihong; Wan Baodong; Wang, Qi Sun, “Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water ”, Journal of Hazardous Materials 266 19–25, (2014)
57. 中華民國環境工程學會,「環境微生物」,(1999)
58. 陳國誠,「酵素工程學」,藝軒出版社,(1992)
59. Yoshida H , “Chemistry of lacquer (Urushi) part 1 ”, J Chem Soc , 43, 472–486, (1883)
60. Claus, H ,“Laccases: structure, reactions, distribution ”, Micron , 35, 93-96 , (2004)
61. Madhavi, Vernekar; Lele S S , “LACCASE: PROPERTIES AND APPLICATIONS ”, BioResources , Vol 4, No 4 ,1694-1717, (2009)
62. Bourbonnais, R ; Paice, M G , “Oxidation of non-phenolic substrates An expanded role for laccase in lignin iodegradation ”, FEBS Lett ,267,99–102 , (1990)
63. Sariaslani, F S ; Beale, J M ; Jr , Rosazza J P , “Oxidation of rotenone by polyporus anceps laccase ”, Nat Prod ,47, 692-697 , (1984)
64. Donati, Enrica; Polcaroa, Chiara M ; Ciccioli, Piero; Galli, Emanuela, “The comparative study of a laccase-natural clinoptilolite-based catalyst activity and free laccase activity on model compounds ”, Journal of Hazardous Materials, 289, 83–90, (2015)
65. Torres, E ; Bustos-Jaimes, I ; LeBorgne, S , ”Potential use of oxidative enzymes for the detoxification of organic pollutants ”, Appl Catal B Environ , 46, 1–15 , (2003)
66. Matilainen, Katriina; Hamalainen, Tiina; Savolainen, Anne; Sipilainen-Malm, Thea ; Peltonen, Jouko ; Erho, Tomi ; Smolander, Maria , “Performance and penetration of laccase and ABTS inks on various printing substrates ”,Colloids and Surfaces B: Biointerfaces , 90 , 119– 128 , (2012)
67. Bollag, J M , “Decontaminating soil with enzymes ”, Environ Sci Technol 26 (10), 1876−1881 , (1992)
68. Richardson, Andrew; McDougall, Gordon J , “Identification and partial purification of an oxidase from lignifying xylem of Leyland cypress (X Cupressocyparis leylandii) ”, Trees 12: 146- 152, (1998)
69. Vandertol-Vanier, H A ;Vazquez-Duhalt, R ;Tinoco, R ; Pickard, M A , “Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase ” J Ind Microbiol Biotechnol ,29, 214-220 , (2002)
70. Rittmann, Bruce E ; McCarty, Perry L , Environmental Biotechnology: Principles and Applications , (2001)
71. Decuypre, E V , “Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria ” 25-40 , (1998)
72. Gianfreda, L ; Bollag, J M , “Effect of Soils on the Behavior of Immobilized Enzymes ” Soil Sci Soc Am J , 58, 672-1681, (1999)
73. Šekuljica, Nataša Ž ; Gvozdenović, Milica M ; Knežević-Jugović, Zorica D ; Jugović, Branimir Z ; Grgur, Branimir N , “Biofuel cell based on horseradish peroxidase immobilized on copper sulfide as anode for decolorization of anthraquinone AV109 dye ”, Journal of Energy Chemistry, Volume 25, Issue 3, Pages 403–408, (2016)
74. Gerhardt, Karen E; Huang, X D ; Glick, B R ; Greenberg, B M , “Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges ”, Plant Science,176, 20-30, (2009)
75. Glaser, C , “Beiträge zur Kenntniss des ”, Acetenyl benzols European journal of inorganic chemistry, 2(1),422-424 , (1869)
76. Smith, M B ; March, J , “Reactions, mechanisms, and structure”,March's Advanced Organic Chemistry , (2001)
77. Chodkiewicz, W , Paris, Ann Chim, 2, 819–869, (1957)
78. Heck, R F ; Nolley, J P , “Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides”, J Org Chem ,37 (14),2320–2322, (1972)
79. Mizoroki, T ; Mori, K ; Ozaki, A , “Arylation of olefin with aryl iodide catalyzed by palladium ”, Bulletin of the Chemical Society of Japan,44(2),581-581, (1972)
80. Miyaura, N ; Suzuki, A , “Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst”, J Chem Soc ,Chem Commun ,(19), 866-867, (1979)
81. Lu, Junhe; Shao, Juan; Liu, Hui; Wang, Zunyao, Huang, Qingguo, “Formation of Halogenated Polyaromatic Compounds by Laccase Catalyzed Transformation of Halophenols ”, Environ Sci Technol , 49 (14), pp 8550–8557, (2015)
82. Mao, L ; Lu, J ; Habteselassie, M ; Luo, Q ; Gao, S ; Cabrera, M ; Huang, Q , “Ligninase-Mediated Removal of Natural and Synthetic Estrogens from Water: II Reactions of 17 beta-Estradiol ” Environ Sci Technol 44 (7), 2599−2604, (2010)
83. Friedel, C ; Crafts, J M ; Compt Rend , “Comptes rendus hebdomadaires des séances de l'Académie des sciences / publiés par MM les secrétaires perpétuels”,1392&1450, (1877)
84. Mita, Naruyoshi; Tawaki, Shin-ichiro; Uyama, Hiroshi; Kobayashi, Shiro, “Laccase-catalyzed oxidative polymerization of phenols ” Macromol Biosci ,3, 253–257 , (2003)
85. Uyama, H ; Kurioka, H ; Kaneko, I ; Kobayashi, S , “Synthesis of a new family of phenol by resin by enzymatic oxidative polymerization ”, Chem Lett 423 , (1994)
86. Nyanhongo, G S ; Erlacher, A ; Schroder, M ; Gubitz, G M , “Enzymatic immobilization of 2,4,6-trinitrotoluene (TNT) biodegradation products onto model humic substances ” Enzyme Microb Technol ; 36,1197–204 , (2006)
87. Ikeda, Ryohei; Tanaka, Hozumi; Uyama, Hiroshi; Kobayashi, Shiro, ”Laccase-catalyzed polymerization of acrylamide ” Macromol Rapid Comrnran 19,423-425, (1998)
88. Schultz, Asgard; Jonas, Ulrike; Hammer, Elke; Schauer Frieder, “Dehalogenation of chlorinated hydroxybiphenyls by fungal Laccase ”,Applied and Environmental Microbiology Sept ,p 4377–4381, (2001)
89. Murugesan, Kumarasamy; Chang, Yoon-Young; Kim, Young-Mo; Jeon, Jong-Rok; Kim, Eun-Ju; Chang, Yoon-Seok, “Enhanced transformation of triclosan by laccase in the presence of redox mediators ” ,water research 44,298– 308, (2001)
90. Mattinen, Maija-Liisa; Kruus, Kristiina; Buchert Johanna; Nielsen Jacob H ; Andersen, Henrik J ; Steffensen, Charlotte L , “Laccase-catalyzed polymerization of tyrosine-containing peptides ”, FEBS J , 272(14):3640-50 , (2005)
91. Bodtke, Anja; Pfeiffer, Wolf-Diethard; Ahrensb Norbert; Peter Langerc, “Horseradish peroxidase (HRP) catalyzed oxidative coupling reactions using aqueous hydrogen peroxide: an environmentally benign procedure for the synthesis of azine pigments”, Tetrahedron 61, 10926–10929, (2005)
92. Setti, Leonardo; Scali, Sara; Angeli, Igor Degli; Pifferi, Pier Giorgio, “Horseradish peroxidase-catalyzed oxidative coupling of 3-methyl 2-benzothiazolinone hydrazine and methoxyphenols”, Enzyme and 107 Microbial Technology 22:656–661, (1998)
93. Baesjou P J ; Driessen W L ; Challa G ; Reedijk J , “Ab initio calculation on 2,6-dimethylphenoland 4-(2,6-dimethylphenoxy)-2, 6-dimethylphenol Evidence of an important role for the phenoxonium cation in the copper-catalyzed oxidative phenol coupling reaction ”, J Am Chem Soc,119:12590 , (1997)
94. Dec, Jerzy; Bollag, Jean-Marc , “Dehalogenation of chlorinated phenols during oxidative coupling ”,Environ Sci Technol ,28, 484-490, (1994)
95. Atagana, H I ; Haynes, R J ; Wallis, F M , “Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil ”, Biodegradation 14: 297–307, 2003
96. 吳正宗,土壤與質體分析技術,國立中興大學土壤環境科學系教材,(2013)