跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阮蔡榮長
NGUYEN THAI VINH TRUONG
論文名稱: 應用SBAS-DInSAR技術分析濁水溪沖積扇沈陷型態與地下水及降雨變化之關聯性
Utilizing the SBAS-DInSAR technique to analyze the relationship between subsidence pattern and variations of groundwater levels and rainfall in Choushui River Fluvial Plain
指導教授: 倪春發
Chuen-Fa Ni
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 118
中文關鍵詞: 地層下陷地表變形干涉合成孔徑雷達最小基線差分干涉合成孔徑雷達
外文關鍵詞: land subsidence, surface deformation, InSAR, SBAS-DInSAR
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 濁水溪沖積平原(CRFP)是台灣中部農業和水產養殖活動的重要地區之一,地下水在該區是灌溉、家庭和工業用水的主要供應來源。幾十年來,CRFP 明顯增加的地下水抽取量導致了地層下陷。儘管相關單位已實施了一系列降低抽水量的政策,但地面仍然持續下陷,並可能危及人的生命和基本基礎設施的安全。為了能控制該區的沈陷速率,有必要對該區地面高程隨時間的變化進行監測。
    本研究希望能藉由SBAS-DInSAR 技術處理 2018-2020 年間所取得的 90 多幅 Sentinel-1A SAR影像來觀察 CRFP近期的地層下陷型態。結果顯示地層下陷最嚴重的區域位於雲林縣中西部。沈陷中心為東勢鄉、元長鄉、四湖鄉、水林鄉、口湖鄉及崙背鄉、土庫鎮與虎尾鎮之交匯處。在這三年期間,雲林縣的最大累積沈陷量達到約–13 至–18 公分。此外根據與光學影像的比較結果,本研究注意到大多數沈陷的地方與農業區域有關。另一方面,彰化縣僅在年下陷速率為 2 至 3 公分/年時才出現中度沈陷。至2020年末,彰化縣的總累積沈陷量主要在–2 到 –5 公分之間變化。埔鹽鄉與溪湖鎮的最大沈陷量達到-7公分,較周圍來的嚴重。本研究另外還分析了累積位移、地下水位和降雨量之間的cross-correlation以評估這些物理量之間的相關性。分析結果顯示地面沈陷與地下水位波動之間有著中等的相關性,相關係數的範圍大約為 0.4 到 0.7。同時,降雨與位移的相關性相對較低,因此其對地表變形的影響並不顯著。
    這項研究還提供了一個顯示高鐵沿線總累積位移的剖面圖。結果顯示了虎尾鎮、土庫鎮和元長鄉的鐵路段在研究期間內有著嚴重的沈陷。但即使在元長鄉與土庫鎮都觀測到了變形速度的減慢,虎尾地區下仍有較高的沈陷速率。因此應持續監測虎尾鎮、土庫鎮與元長鄉的沈陷情況,以便決策者提出對應下陷速率的控制政策,並最大限度地降低鐵路的潛在風險。
    最後,本研究使用了具備多種強大功能的PCI Geomatica軟件來處理SAR圖像,並估計了 2018-2020 年間 CRFP的地層下陷時空發展情形。


    The Choushui River fluvial plain (CRFP) is one of the critical regions for agricultural and aquacultural activities in Central Taiwan. In this region, groundwater is the main supply for irrigation, domestic and industrial usages. For decades, the amount of extracted groundwater in CRFP has significantly increased, resulting in land subsidence. Although the authorities had some policies to reduce the pumping rate, the ground has unexpectedly continued to subside, which might risk the safety of human lives and essential infrastructures. Therefore, monitoring the ground elevation changes in this area over time is necessary to control the subsiding rates.
    This study aims to observe the recent land subsidence patterns in the CRFP by applying the SBAS-DInSAR technique to process over 90 Sentinel-1A SAR images acquired from 2018 – 2020. The results indicated that the regions that suffered most from land subsidence were located in the western central side of Yunlin County. The centers of subsidence were Dongshi, Yuanzhang, Sihu, Shuilin, Kouhu, and an intersection area of Lunbei, Tuku, and Huwei districts. After three years, the maximum cumulative displacement values in Yunlin County reached approximately –13 to –18 cm. In addition, it is also noticed that the most subsiding places correspond to the agricultural lands, based on the comparison with optical images. On the other hand, Changhua County only experienced moderate subsidence when the annual sinking rate varied from 2 to 3 cm/year. At the end of the study period, the total cumulative subsidence values in Changhua County mainly varied from –2 to –5 cm. Puyan and Xihu districts witnessed more serious subsidence than the surroundings, with the maximum displacement reaching –7 cm.
    Furthermore, cross-correlation analyses between the cumulative displacements, groundwater levels, and rainfall were conducted to statistically assess the correlation between these quantities. The analyses indicated that the correlations between subsidence and groundwater level fluctuations were moderate, ranging from 0.4 to 0.7. Meanwhile, rainfall insignificantly impacted the surface deformation since its correlations with displacements were relatively low.
    This study also provided a profile indicating the total cumulative displacements along the High-Speed Rail. It was shown that railroad segments in Huwei, Tuku, and Yuanzhang districts experienced severe subsidence during the research period. Especially, the sinking rate in Huwei district was relatively high even though Tuku and Yuanzhang have observed the decelerated deformation. Therefore, the subsidence in Huwei, Tuku, and Yuanzhang districts should be monitored continuously so that the decision-makers could introduce appropriate policies to control the sinking rates, minimizing potential risks to the railroad.
    Finally, this study initially applied the PCI Geomatica software, which provides multiple powerful functions, to process SAR images more conveniently. The results of this study could be an estimation of the spatial and temporal development of land subsidence in the CRFP during 2018 – 2020.

    ABSTRACT 1 摘要 3 LIST OF CONTENTS 4 LIST OF FIGURES 7 LIST OF TABLES 10 LIST OF ABBREVIATIONS 11 LIST OF NOTATIONS 12 CHAPTER 1. INTRODUCTION 13 1.1. Literature Review 13 1.1.1. Land subsidence induced by groundwater extraction overview 13 1.1.2. Primary InSAR-based techniques to monitor land subsidence 14 1.1.3. Monitoring land subsidence in the Choushui River Fluvial Plain by the InSAR-based techniques 17 1.2. Motivations and Objectives 18 1.2.1. Motivations 18 1.2.2. Objectives 20 1.3. Thesis structure 21 CHAPTER 2. STUDY AREA 22 2.1. Hydrogeological features 22 2.2. Pumping-induced land subsidence conditions in the study area 28 CHAPTER 3. METHODOLOGY 31 3.1. Datasets 31 3.2. The Differential Interferometric SAR Principle 35 3.3. An overview of DInSAR Decorrelation 37 3.4. Small Baseline Subset (SBAS) Technique 38 3.5. Data Processing Workflow 41 3.5.1. Pair Selection 43 3.5.2. Coregistration and Raw Interferogram Generation 43 3.5.3. Phase Unwrapping 43 3.5.4. Subsidence Map Generation 44 CHAPTER 4. RESULTS AND DISCUSSION 51 4.1. InSAR Result Accuracy Assessment 51 4.1.1. Overview of InSAR average velocities in 2018 and 2019 51 4.1.2. InSAR averages velocities assessed by GPS and Leveling 55 4.1.3. Reasons leading to differences between InSAR results and other monitoring measures 59 4.2. Land subsidence development in the CRFP from 2018 to 2019 60 4.3. Relationship between land subsidence, groundwater levels, and rainfall 68 4.4. InSAR cumulative displacement maps in 2020 74 4.5. Cumulative displacements along the HSR 79 4.5.1. Measurement Points Selection 79 4.5.2. Average Velocities and Cumulative Displacements 80 CHAPTER 5. CONCLUSIONS & SUGGESTIONS 88 5.1. Conclusions 88 5.2. Suggestions 89 REFERENCES 92 Appendix 98

    1. Poland, J.F. Guidebook to studies of land subsidence due to ground-water withdrawal; UNESCO: Paris, France, 1984.
    2. Holzer, T.L.; Johnson, A.I. Land subsidence caused by ground water withdrawal in urban areas. GeoJournal 1985, 11, 245-255.
    3. Holzer, T.L. Ground failure induced by ground-water withdrawal from unconsolidated sediment. Reviews In Engineering Geology 1984, 6, 67-105.
    4. Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483-486.
    5. Vega, G.F. Subsidence of the city of Mexico: a historical review. In Proceedings of the Proceedings of the Anaheim Symposium, 1976; pp. 35-38.
    6. Nutalaya, P.; Yong, R.; Chumnankit, T.; Buapeng, S. Land subsidence in Bangkok during 1978–1988. In Sea-Level Rise and Coastal Subsidence: Causes, Consequences, and Strategies, Milliman, J.D., Haq, B.U., Eds.; Springer: Dordrecht, 1996; pp. 105-130.
    7. Hu, R.; Wang, S.; Lee, C.; Li, M. Characteristics and trends of land subsidence in Tanggu, Tianjin, China. Bulletin of Engineering Geology and the environment 2002, 61, 213-225.
    8. Liu, C.; Tu, F.; Huang, C.; Ouyang, S.; Chang, K.; Tsai, M. Current status of land subsidence in Taiwan. In Proceedings of the Proceedings of 6th International Symposium on Land Subsidence, 2000; pp. 205-212.
    9. Hsu, W.C.; Chang, H.C.; Chang, K.T.; Lin, E.K.; Liu, J.K.; Liou, Y.A. Observing land subsidence and revealing the factors that influence it using a multi-sensor approach in Yunlin County, Taiwan. Remote Sensing 2015, 7, 8202-8223.
    10. Lu, C.H.; Ni, C.F.; Chang, C.P.; Yen, J.Y.; Hung, W.C. Combination with precise leveling and PSInSAR observations to quantify pumping-induced land subsidence in central Taiwan. Proc. IAHS 2015, 372, 77-82.
    11. Huang, M.-H.; Bürgmann, R.; Hu, J.-C. Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics 2016, 692, 252-264.
    12. Ge, L.; Ng, A.H.-M.; Du, Z.; Chen, H.-Y.; Li, X. Integrated space geodesy for mapping land deformation over Choushui River Fluvial Plain, Taiwan. International Journal of Remote Sensing 2017, 38, 6319-6345.
    13. Hung, W.C.; Hwang, C.W.; Chen, Y.A.; Zhang, L.; Chen, K.H.; Wei, S.H.; Huang, D.R.; Lin, S.H. Land subsidence in Chiayi, Taiwan, from compaction well, leveling and ALOS/PALSAR: Aquaculture-induced relative sea level rise. Remote Sensing 2018, 10, 40.
    14. Galloway, D.L.; Burbey, T.J. Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal 2011, 19, 1459-1486.
    15. Blodgett, J.; Ikehara, M.; Williams, G.E. Monitoring land subsidence in Sacramento Valley, California, using GPS. Journal of Surveying Engineering 1990, 116, 112-130.
    16. Abidin, H.Z.; Djaja, R.; Darmawan, D.; Hadi, S.; Akbar, A.; Rajiyowiryono, H.; Sudibyo, Y.; Meilano, I.; Kasuma, M.; Kahar, J. Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Natural Hazards 2001, 23, 365-387.
    17. Hu, J.; Shi, B.; Inyang, H.I.; Chen, J.; Sui, Z. Patterns of subsidence in the lower Yangtze Delta of China: the case of the Suzhou-Wuxi-Changzhou Region. Environmental Monitoring and Assessment 2009, 153, 61-72.
    18. Xue, F.; Lv, X.; Dou, F.; Yun, Y. A review of time-series interferometric SAR techniques: A tutorial for surface deformation analysis. IEEE Geoscience and Remote Sensing Magazine 2020, 8, 22-42.
    19. Perissin, D.; Ferretti, A. Urban-target recognition by means of repeated spaceborne SAR images. IEEE Transactions on Geoscience and Remote Sensing 2007, 45, 4043-4058.
    20. Dheenathayalan, P.; Cuenca, M.C.; Hanssen, R. Different approaches for psi target characterization for monitoring urban infrastructure. In Proceedings of the 8th International Workshop on Advances in the Science and Applications of SAR Interferometry,‘FRINGE 2011, 2011.
    21. Soergel, U. Review of radar remote sensing on urban areas. In Radar remote sensing of urban areas; Springer: 2010; pp. 1-47.
    22. Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing 2001, 39, 8-20.
    23. Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters 2004, 31.
    24. Kampes, B.; Adam, N. The STUN algorithm for persistent scatterer interferometry. Proceedings of FRINGE 2005 2005, 1-14.
    25. Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogram. Remote Sensing 2016, 115, 78-89.
    26. HO TONG MINH, D.; Hanssen, R.; Rocca, F. Radar interferometry: 20 years of development in time series techniques and future perspectives. Remote Sensing 2020, 12, 1364.
    27. Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE TGRS 2002, 40, 2375-2383.
    28. Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE transactions on geoscience and remote sensing 2011, 49, 3460-3470.
    29. Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An overview of the small baseline subset algorithm: A DInSAR technique for surface deformation analysis. Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change 2007, 637-661.
    30. Hooper, A. A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters 2008, 35.
    31. Hooper, A.; Prata, F.; Sigmundsson, F. Remote sensing of volcanic hazards and their precursors. Proceedings of the IEEE 2012, 100, 2908-2930.
    32. Goel, K.; Adam, N. An advanced algorithm for deformation estimation in non-urban areas. ISPRS journal of photogrammetry and remote sensing 2012, 73, 100-110.
    33. Hung, W.C.; Hwang, C.W.; Chang, C.P.; Yen, J.Y.; Liu, C.H.; Yang, W.H. Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environmental Earth Sciences 2010, 59, 1535-1548.
    34. Yang, Y.-J.; Hwang, C.; Hung, W.-C.; Fuhrmann, T.; Chen, Y.-A.; Wei, S.-H. Surface deformation from Sentinel-1A InSAR: relation to seasonal groundwater extraction and rainfall in Central Taiwan. Remote Sensing 2019, 11, 2817.
    35. Lu, C.-Y.; Hu, J.-C.; Chan, Y.-C.; Su, Y.-F.; Chang, C.-H. The Relationship between Surface Displacement and Groundwater Level Change and Its Hydrogeological Implications in an Alluvial Fan: Case Study of the Choshui River, Taiwan. Remote Sensing 2020, 12, 3315.
    36. Hung, W.C.; Hwang, C.W.; Chen, Y.A.; Chang, C.P.; Yen, J.Y.; Hooper, A.; Yang, C.Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment 2011, 115, 957-967.
    37. Tung, H.; Hu, J.-C. Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics 2012, 578, 126-135.
    38. Polcari, M.; Palano, M.; Fernández, J.; Samsonov, S.V.; Stramondo, S.; Zerbini, S. 3D displacement field retrieved by integrating Sentinel-1 InSAR and GPS data: the 2014 South Napa earthquake. European journal of remote sensing 2016, 49, 1-13.
    39. Peng, M.; Zhao, C.; Zhang, Q.; Lu, Z.; Li, Z. Research on spatiotemporal land deformation (2012–2018) over Xi’an, China, with multi-sensor SAR datasets. Remote Sensing 2019, 11, 664.
    40. Chen, Y.; Tan, K.; Yan, S.; Zhang, K.; Zhang, H.; Liu, X.; Li, H.; Sun, Y. Monitoring land surface displacement over Xuzhou (China) in 2015–2018 through PCA-based correction applied to SAR interferometry. Remote Sensing 2019, 11, 1494.
    41. Attema, E.; Bertoni, R.; Bibby, D.; Carbone, A.; Cosimo, G.d.; Geudtner, D.; Giulicchi, L.; Lokas, S.; Navas-traver, I.; Ostergaard, A. Sentinel-1: ESA's Radar Observatory Mission for GMES Operational Services. In ESA Communications report ESA SP-1322/1; European Space Agency: 2012.
    42. Devanthéry, N.; Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Crippa, B. Deformation Monitoring Using Persistent Scatterer Interferometry and Sentinel-1 Data in Urban Areas. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018; pp. 6103-6106.
    43. Hanssen, R.F. Radar interferometry: data interpretation and error analysis; Springer Science & Business Media: 2001; Volume 2.
    44. European Space Agency. Sentinel Data Access Overview—Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/sentinel-data-access (accessed on 1 April 2020).
    45. Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Transactions on geoscience and remote sensing 1992, 30, 950-959.
    46. Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 1998, 34, 2573-2585.
    47. Geomatica Banff, SP3; PCI Geomatics: 2020, https://catalyst.earth/about/.
    48. Water Resources Agency. Hydrological Year Book of Taiwan; Ministry of Economic Affairs: Taipei, Taiwan, Republic of China, 2000.
    49. Central Geological Survey. Project of groundwater monitoring network in Taiwan during first stage – Research report of Choushui River alluvial fan.; Taiwan, 1999; p. 383.
    50. Hung, W.C.; Wang, C.; Hwang, C.; Chen, Y.A.; Chiu, H.C.; Lin, S.H. Multiple sensors applied to monitor land subsidence in Central Taiwan. Proc. IAHS 2015, 372, 385-391, doi:10.5194/piahs-372-385-2015.
    51. Liu, C.W.; Jang, C.S.; Chen, S.C. Three-dimensional spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan. Environmental Geology 2002, 43, 48-56.
    52. Huang, C.Y. Foraminiferal analysis and stratigraphic correlation on the subsurface geology of the Choushuichi alluvial fan. In Proceedings of the Conf. on Groundwater and Hydrogeology of Choushui River Alluvial Fan Taipei, Taiwan, 1996; pp. 8-9.
    53. Hsu, Y.-J.; Fu, Y.; Bürgmann, R.; Hsu, S.-Y.; Lin, C.-C.; Tang, C.-H.; Wu, Y.-M. Assessing seasonal and interannual water storage variations in Taiwan using geodetic and hydrological data. Earth and Planetary Science Letters 2020, 550, 116532.
    54. Lin, H.; Ke, K.; Tan, Y.; Wu, S.; Hsu, G.; Chen, P.; Fang, S. Estimating pumping rates and identifying potential recharge zones for groundwater management in multi-aquifers system. Water resources management 2013, 27, 3293-3306.
    55. Hung, W.C.; Hwang, C.W.; Liou, J.C.; Lin, Y.S.; Yang, H.L. Modeling aquifer-system compaction and predicting land subsidence in central Taiwan. Engineering Geology 2012, 147, 78-90.
    56. GPS Lab of Academia Sinica. Available online: http://gps.earth.sinica.edu.tw (accessed on 23 May 2021).
    57. Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth 1989, 94, 9183-9191.
    58. Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338-351.
    59. Li, Z.; Bethel, J. Image coregistration in SAR interferometry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2008, 37, 433-438.
    60. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geoscience and remote sensing magazine 2013, 1, 6-43.
    61. Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. J. Opt. Soc. Am. A 2000, 17, 401-414.
    62. Chen, C.W.; Zebker, H.A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing 2002, 40, 1709-1719.

    QR CODE
    :::