跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖欽承
Chin-chen Liao
論文名稱: 集光式太陽熱能發電系統分析評估
Analysis and evaluation of concentrating solar power system
指導教授: 吳俊諆
Jiunn-chi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 92
中文關鍵詞: 集光式太陽熱能發電熱傳遞流體太陽熱能技術評估
外文關鍵詞: Assessment of solar thermal power technology, Concentrating solar power, Heat transfer fluid
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對集光式太陽熱能發電(concentrating solar power, CSP)系統的性能進行模擬,並評估台灣設置CSP系統的可行性。太陽熱能屬於再生能源的一種,不同於一般太陽光發電,CSP系統是藉由聚光型收集器收集太陽輻射,加熱流體帶動朗肯發電循環發電。由於太陽能為取之不盡的天然資源,且美國加州的SEGS (solar electricity generating systems)自1984年以來有很成功的商業運轉記錄,故已有數個國家正資助相關的CSP的研究。
    本文考慮的CSP系統模擬以裝置容量30 MW的SEGS VI為原型,使用TRNSYS軟體建立模型,搭配台灣地區氣象資料模擬CSP系統在冬、夏兩季的發電性能,並觀察不同熱傳遞流體條件對CSP性能的影響。分析顯示由於台灣夏季的日照充足且穩定,系統效率維持19%,而冬季的日照條件相對較差,使得CSP發電效果不佳。
    此外,以整年日照情況與發電系統的土地使用量轉換(land transformation)進行分析,當年日照量分布約在800~1500 kW/m2a時,相較於PV系統並無明顯優勢,CSP系統的土地需求大於600 m2/GWh,遠高於火力及核能發電廠所需。但是另一方面,CSP系統的CO2排放量相較於火力和核能電廠就相當少,僅為13 gCO2e/kWh。就分析結果而言,台灣先天日照量的不足限制了CSP系統輸出性能,但CSP系統與火力及核能發電相比較則各有其優缺點,經過適當的規劃,台灣有機會以CSP取代部分現有的發電系統,達到CO2減量及能源自?的目標。


    This research focuses on simulation of concentrating solar power (CSP) and feasibility assessment of this technology in Taiwan. Unlike conventional concentrating PV system, solar thermal power energy collected solar irradiation by concentrated collector to heating the HTF and drive the Rankine cycle. The Solar Electric Generating Systems (SEGS) in California has a long and successful commercial operation record since 1984, therefore several countries are funding CSP research.
    This study chooses the SEGS VI system (install capacity is 30 MW) as the prototype, and use TRNSYS to incorporate Taiwan’s weather data to simulate the performance of CSP plant in different season and with various heat transfer fluids (HTF). Because low irradiation in winter which is not enough to support CSP system, results show poor electricity production for such system in Taiwan.
    Furthermore, compare to conventional PV system, CSP had no advantage in land transformation for the range of annual irradiation 800~1,500 kWh/m2-a. The required land transformation of CSP is larger than 600 m2/GWh, which higher than that of coal-fired and nuclear power plant. On the other hand, CSP emit much lower CO2 amount (13 gCO2e/kWh) than coal-fired and nuclear powerplants. It can reduce greenhouse gas effectively. Therefore, limitations and advantage are coexist for developing CSP system in Taiwan.

    中文摘要 i 英文摘要 ii 致謝 ii 目錄 iii 圖目錄 v 符號說明 x 第一章 序論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究內容 4 第二章 集光太陽熱能發電系統 5 2.1 系統簡介 5 2.2 太陽熱能 8 2.2.1 直射太陽光 8 2.3 太陽熱能收集場 12 2.3.1 太陽光收集器 13 2.3.2 熱收集元件 20 2.3.3熱傳遞流體 21 2.4熱儲存系統 23 2.4.1熱儲存介質 24 2.4.2系統運轉模式 28 2.5發電廠動力循環 31 第三章 模擬系統建立 37 3.1 TRNSYS軟體 37 3.2 氣象資料 41 3.2.1 微型氣象站 42 3.3 CSP系統模型建立 45 3.4 發電循環模型建立 50 第四章 結果與討論 54 4.1 台灣地區氣候及地理環境 54 4.2 日照量對系統影響 62 4.3 熱傳遞流體對系統影響 72 4.4 不同型式發電廠土地使用狀況與二氧化碳排放比較 79 第五章 結論及建議 88 5.1 結論 88 5.2 未來改進方向 89 參考文獻 90

    Boles, C., (2002) Thermodynamics, McGraw-Hill.
    Dudley, V. E., Kolb, G. J., Sloan, M., Kearney, D., (1994) “Test Results SEGS LS-2 Solar Collector,” SAND94-1884.
    EES (2008) A transient simulation program, user’s manual, Version 8.158, Solar Energy Laboratory, University of Wisconsin-Madison.
    Eichhammer, W., Raqwitz, M., Morin, G., Lerchenmuller, H., Stein, W., Szewczuk, S., (2005) “Assesement of World Bank/GEF strategy for the market development of concentrating solar thermal power” prepared for the World Bank.
    European Solar Thermal Power Industry Association (ESTIA) (2003) “Solar thermal power 2020: Exploiting the heat from the sun to combat climate change,” Greenpeace International.
    Fthenakis, V., Kim, H. C., (2009) “Land use and electricity generation: A life-cycle analysis,” Renewable and Sustainable Energy Reviews, 13, 1465-1474.
    Gra?l, H., Kokott, J., Kulessa, M., Luther, J., Nuscheler, F., Sauerborn, R., Schellnhuber, H.-J., Schubert, R., Schulze, E.-D., (2003) World Transition – Toward Sustainable Energy systems, Earthscan.
    Jorgensen, G., (2001) “Summary status of most promising candidate advanced solar mirrors (testing and development activities),” Milestone report to DOE, NREL.
    Moens, L., Blake, D., Rudnicki, D., Hale, M., (2003) “Advanced thermal storage fluids for solar parabolic trough systems,” J. Solar Energy Engineering, 125, 112-116.
    Mills, D., (2004) “Advances in solar thermal electricity technology” Solar Energy, 76, 19-31.
    Pacheco, J., Snowalter, S., Kolb, W., (2001) “Development of a molten-salt thermocline thermal storage system for parabolic trough plants,” J. Solar Energy Engineering, 124, 153-159.
    Patnode, A. M., (2006) “Simulation and performance evaluation of parabolic trough solar power plants” Master thesis, Mechanical Engineering, University of Wisconsin-Madison.
    Pilkington Solar International GmbH (2000) “Survey of thermal storage for parabolic trough power plants,” NREL, NREL/SR-550-2792.
    Price, H., Lupfert, E., Kearney, D., Zarza, E., Cohen, G., Gee, R., Mahoney, R., (2002) “Advances in parabolic trough solar power technology,” J. Solar Energy Engineering, 124, 109-125.
    Quaschning, V., (2004) “Technical and economical system comparison of photovoltaic and concentrating solar thermal power systems depending on annual global irradiation,” Solar Energy, 77, 171–178.
    Sargent & Lundy LLC Consulting Group (2003) “Assessment of parabolic trough and power tower solar technology cost and performance forecasts,” NREL, NREL/SR-550-34440.
    SCHOTT, (2006) “SCHOTT Memorandum on Solar Thermal Power Plant Technology,” www.schott.com/newsfiles/20061109160336_SCHOTT_Memorandum_E.pdf
    SolarPACES, (2004) “The Concentrating Solar Power Global Market Initiative,” GMI Program Brochure, IEA
    Sovacool, B. K., (2008) “Valuing the greenhouse gas emissions from nuclear power: A critical survey,” Energy Policy, 36, 2950-2963.
    TRNSYS (2007) A transient simulation program, user’s manual, Version 16., Solar Energy Laboratory, University of Wisconsin-Madison.
    Valkenburg, M., Vaughn, R., Williams, M., Wilkes, J., (2005) “Thermochemistry of ionic liquid heat-transfer fluids,” Thermochimica Acta, 425, 181-188.
    林憲德、黃國倉 (2005) “台灣TMY2標準氣象年之研究與應用”,建築學報,第53期,79-94。
    張智凱 (2008) “被動式雙軸太陽追蹤器之追控系統開發”,國立中央大學機械工程學系碩士論文。
    徐明同、張政改、林蘭貞 (1975) “台灣氣象與太陽能發展之關係” 能源季刊,第6卷,第2期。
    徐翠華 (2002) “台灣地區太陽輻射及太陽能發電潛力之研究”,國立臺灣師範大學地理研究所碩士論文。

    QR CODE
    :::