| 研究生: |
鄭廷翰 CHENG,TING-HAN |
|---|---|
| 論文名稱: |
可重組式微波被動元件 Reconfigurable Microwave Passive Components |
| 指導教授: | 林祐生 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 可重組 、微波 、被動元件 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以可重組式微波被動元件電路為設計目標,首先,提出一個具有四種不同電路功能的可重組式微波電路。將藉由控制開關改變傳輸線的連接方式,達成枝幹耦合器、鼠競耦合器、帶通濾波器與帶拒濾波器等四種不同的功能,並以印刷電路板以進行功能驗證。其中四種功能操作頻率皆為2 GHz,整體電路尺寸為 44.0 mm × 58.0 mm,電氣尺寸在中心頻率 2 GHz 下為 0.2933 λ0 × 0.3867 λ0。又為了縮小電路面積,將可重組式微波被動元件微型化,並以CMOS及GaAs IC製程實現,操作頻率選定於X band,實現擁有枝幹耦合器與帶通濾波器兩種不同功能的可重組式微波元件, GaAs製程版本之晶片尺寸為1.35 mm × 1.24 mm,在操作頻率下之電氣尺寸為0.0419λ0 × 0.0384λ0; CMOS製程版本之晶片尺寸為0.911 mm × 0.515 mm,在操作頻率下之電氣尺寸為 0. 0282λ0 × 0.0160λ0。兩者之電路面積與單功能電路差異不大,但可擁有兩種不同電路功能。
In this study, reconfigurable microwave passive components are proposed. First, a novel reconfigurable circuit with four different functions is presented. The four different functions are branch coupler, rat race coupler, bandpass filter and bandstop filte.It is achieved by controlling the switches to change the connection statue of the transmission lines.A design example in PCB is presented, and the operating frequency is 2 GHz. The circuit size is 44.0 mm × 58.0 mm while the electrical size is 0.2933〖 λ〗_0× 0.3867〖 λ〗_0 at 2 GHz. In order to reduce the circuit area, reconfigurable microwave passive components are then miniaturized and realized in CMOS and GaAs IC processes. The operating frequency is set at the X band, between two different functions, i.e., a branch coupler or a bandpass filter. For the GaAs version, the chip size is 1.35 mm × 1.24 mm and the electrical size is around 0.0419〖 λ〗_0× 0.0384 〖 λ〗_0 at 10 GHz. For the CMOS version, the chip size is 0.911 mm × 0.515 mm and the electrical size is around 0.0282〖 λ〗_0× 0.0160 〖 λ〗_0 at 10 GHz. Both of them exhibit a circuit size similar to that of the conventional single-function circuits, but they can achieve two different functions.
[1] W. D. and R. R. Mansour,”Tunable dielectric resonator bandpass filter with embedded MEMS tuning elements,” IEEE Trans Microw. Theory Tech.,vol. 55,no. 1,pp. 154-160,Jan. 2007
[2] J. Sigman, C. D. Nordquist, P. G. Clem, G. M. Kraus, and P.S. Finnegan,”Voltage-controlled Ku-band and X-band tunable combline filters using Barium-Strontium-Titanate,”IEEE Microw. Wireless Compon. Lett.,vol. 18,no. 9, pp.593-595,Sep. 2008
[3] S. J. Park, I. Reines, C. Patel, and G. M. Rebeiz,” High-Q RF-MEMS 4-6 GHz tunable evanescent-mode cavity filter,’’IEEE Teans. Microw. Theory Tech,vol. 58,no. 2,pp. 381-389,Feb 2010
[4] B. W. Kim and S. W. Yun,”Varactor-tuned combline bandpass filter using step-impedance microstrip lines,” IEEE Trans. Microw. Theory Tech.,vol. 52 ,no. 4,pp. 1279-1283,Apr. 2004
[5] J. Lee, E. J. Naglich , H. H. Sigmarsson, P. Dimitrios and W. J. Chappell,”Tunable inter-resonator coupling structure with positive and negative values and its application to the field-programmable filter array (FPFA),”IEEE Trans. Microw. Theory Tech.,vol. 59,no. 12,pp3389-3400,Dec. 2011
[6] H. Fan, J. Geng, X. Liang, R. Jin, and X. Zhou, “A three-way reconfigurable power divider/combiner,” IEEE Trans. Microw. Theory Techn.,vol. 63, no. 3, pp. 986–998, Mar. 2015.
[7] S. Kim and J. Jeong, “Reconfigurable 1:3 power divider using coupled lines,” Electron. Lett., vol. 45, no. 22, pp. 1141–1143, Oct. 2009.
[8] Huy Nam Chu,Hua-Chien Liao,Gao-Yi Li and Tzyh-Ghuang Ma,”Novel phase reconfigurable synthesized transmission line and its application to reconfigurable hybrid coupler,”IEEE European Microwave Integrated Circuits Conference
,Nuremberg ,2017 ,pp. 337-340.
[9] M. Pozar, Microwave Engineering, 3rded., Jhon Wiley & Sons, Inc., 2005
[10] Y.-H. Cho and G. M. Rebeiz, “0.7–1.0-GHz reconfigurable bandpass-to-bandstop filter with selectable 2- and 4-pole responses,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2626–2632,Nov. 2014.
[11] T. Yang and G. M. Rebeiz,’’Bandpass-to-bandstop reconfigurable tunable filters with frequency and bandwidth controls,” IEEE Transactions on Microwave Theory and Techniques,vol. 65,no7,pp2288-2297,July 2017
[12] T. Yang and G. M. Rebeiz,’’A 1.9-2.6GHz filter with-both bandpass-to-bandstop reconfigurable function and bandpass-and-bandstop cascading function,”IEEE MTT-S International Microwave Symposium (IMS),Honololu,HI,2017,pp264-266
[13] C. Y. Kuo,A. Y. K. Chen,C. M. Lee, and C. H. Luo,” Miniature 60 GHz slow-wave CPW branch-line coupler using 90 nm digital CMOS process,”Electronics Letters,vol. 4,pp. 924-925,2011
[14] Chirala, M.K., and Floyd, B.A.: ‘Millimetre-wave Lange and ring-hybrid couplers in a silicon technology for E-band applications’. IEEE Microwave Symp. Dig. (IMS), San Francisco, CA, USA, June 2006,pp. 1547–1550
[15] C.Y. Ng, M. Chongcheawchamnan, M.S. Aftanasar,I.D. Robertson and J. Minalgiene,” Miniature X-band branch-line coupler using photoimageable thick-film materials,”IEEE Electronics Letts.,37,1167-1168,2001
[16] K. Hettak, G. A. Morin, and M. G. Stubbs, “A new miniaturized type of three-dimensional SiGe 90° hybrid coupler at 20 GHz using the meandering TFMS and stripline shunt stub loading,” IEEE MTT-S Int. Microwave symp. Dig. , 2007, pp. 33-36.
[17] M. J. Chiang, H. S. Wu,M. L. Lee and C. K. C. Tzuang,”Design of compact Ka-band monolithic branch-line couper on silicon substrate,” in Proc. Asia-Pacific Microw. Conf., pp. 2174-2127,Singapore,Jan 2009
[18] Haroun, I., Wight, J., Plett, C., Fathy, A., and Chang, D.-C.”Experimental analysis of a 60 GHz compact EC-CPW branch-line coupler for mm-wave CMOS radios”, IEEE Microw. Wirel. Compon. Lett., 2010, 20, (4), pp. 211–213
[19] A.Y.K. Chen, H.-B. Liang,Y. Baeyens, Y. K. Chen, J. Lin and L. S. Lin, “Wideband mixed lumped-distributed-element 90∘and 180∘power splitters on silicon substrate for millimetre-wave applications”. IEEE Radio Frequency
Integrated Circuit (RFIC) Symp., Atlanta, GA, USA,June 2008, pp. 449–452
[20] Ramesh K. Pokharel, X. Liu, R. Dong, A. B. A. Dayang, Haruichi Kanaya, and Keiji Yoshida, “60GHz-band low loss on-chip band pass filter with patterned ground shields for millimetre wave CMOS SoC,” IEEE MTT-S International Microwave Symposium Digest, Aug 2011, pp1-4.
[21] K. Ma, S. Mou and K. S. Yeo, “Miniaturized 60-GHz on-chip multimode quasi-elliptical bandpass filter,” IEEE Electron Device Lett., vol. 34, no. 8, pp. 945–947, Aug. 2013, doi:10.1109/LED.2013.2265165.
[22] D. Wang, K. S. Chin, W. Che, Y. Wu, and C. C. Chang, “Compact 60 GHz low-temperature cofired ceramic filter with quasi-elliptic bandpass response,” IET Microwaves, Antennas and Propagation, vol. 10, no. 6, pp. 664–669, Apr. 2016, doi: 10.1049/ietmap.2015.0694.
[23] P. Lin, J. Y. Li,Ding X. W. Ding,”Compact on-chip bandpass filter with low insertion loss for 60-GHz SIP application,” IEEE Design Test & Packaging of MEMS and MOEMS(DTIP),May 2018,pp.22-25
[24] Y.S. Lin and J. H. Lee, "Miniature butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2594-2602, July 2013.
[25] 李駿華, "無頻寬減損之微小化功率分配器與巴特勒矩陣," 碩士論文 國立中央大學, June 2011.
[26] 曾子豪, "無頻寬減損之微小化集總元件被動電路," 碩士論文 國立中央大學, June 2012.
[27] M. Pozar, Microwave Engineering, 3rded., Jhon Wiley & Sons, Inc., 2005.