跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡浩鈞
Eric Haujuan Hu
論文名稱: 平行血流模擬使用非牛頓模型的數值研究
A Numerical Study on Parallel Hemodynamics Simulation Using Non-Newtonian Model
指導教授: 黃楓南
Feng-Nan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 44
中文關鍵詞: 血流模擬非牛頓流體數值方法
外文關鍵詞: Hemodynamics simulation, non-Newtonian fluid, Numerical Method
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 模擬血液在血管裡的行為有助於醫療人員或研究學者對心血管疾病掌握相關資訊,並降低手術的風險以及協助手術計畫。此篇論文中,我們使用Carreau-Yasuda模型模擬非牛頓流體以及牛頓流體在三維的血流模擬問題,包括long straight artery problem、end-to-side anastomosis probelm,以及針對個別病患所造出的pulmonary
    artery probelm。在離散化方面,對於空間上的離散使用stabilized finite element method,而時間上的離散則使用implicit backward Euler finite difference method,於每一離散時間點,我們採用Newton-Krylov-Schwarz algorithm 解非線性系統。此篇
    論文我們藉由比較以兩種不同流體為基礎的血流模擬,進而證實非牛頓流體在血流模擬的重要性,更決定了在複雜血管模型之下,非牛頓流體為不可或缺的條件。


    Numerical simulation of blood flow in the arteries becomes an invaluable tools to help both of the physicians to plan the surgery procedure to reduce the risk of surgery and the researchers to understand the cardiovascular diseases. To ease the numerical difficulties of blood flow simulation, blood is often assumed to be Newtonian fluid as the first approximation. However, the shear thinning effect is significant in large arteries due to the dramatic change of the shear stress during a cardiac cycle and the non-homogeneous
    properties of blood. Moreover, the recirculation happens frequently in the low shear rate region. To compute accurately the wall shear stress that provides more useful information to predict the formation of intimal hyperplasia, it is necessary to take the rheological
    effect of blood flows in to account. In this study, the non-Newtonian blood flows in different complexity of artery were numerically investigated by using 3D fully parallel incompressible fluid solver. Our fluid solver is developed based on generalized Newtonian fluid model, where the viscosity is the function of rate of strain tensor. More specifically, the more commonly-used model for blood flow simulation, the Carreau-Yasuda model,
    compared with Newtonian model are reported, including the investigation how the wall shear stress distribution and the streamlines and pressure distribution depend on different physiological conditions and arterial geometries.

    1 Introduction (p.1) 2 Mathematical model and parallel solution algorithm (p.6) 2.1 Governing Equations and Boundary Conditions. (p.6) 3 Solution algorithm (p.10) 3.1 Spatial and temporal discretizations (p.10) 3.2 Newton-Krylov-Schwarz algorithm (p.12) 4 Numerical results and discussion (p.14) 4.1 Test cases (p.14) 4.2 Grid convergence test (p.18) 4.3 Local and Global non-Newtonian importance factor (p.19) 4.4 Parametric study (p.24) 5 Concluding remarks (p.30) Bibliography (p.31)

    [1] F. Loth. Velocity and wall shear measurements inside a vascular graft model under
    steady and pulsatile flow conditions. 1993.
    [2] G. B. Thurston. Viscoelasticity of human blood. Biophysical journal, 12(9):1205–
    1217, 1972.
    [3] Hughes T. J. Taylor, C. A. and C. K. Zarins. Finite element modeling of blood flow
    in arteries. Computer Mrthods in Applied Mechanics and Engineering, 158(1):155–
    196, 1998.
    [4] J. Kwack and A. Masud. A stabilized mixed finite element method for shear-rate
    dependent non-newtonian fluids: 3d benchmark problems and application to blood
    flow in bifurcating arteries. Computational Mechanics, 53(4):751–776, 2014.
    [5] Johnston P. R. Corney S. Johnston, B. M. and D. Kilpatrick. Non-newtonian blood
    flow in human right coronary arteries: steady state simulations. Journal of Biome-
    chanics, 37(5):709–720, 2004.
    [6] E. W. Merrill. Rheology of blood. Physiol. Rev, 49(4):863–888, 1969.
    [7] Y. I. Cho and K. R. Kensey. Effects of the non-newtonian viscosity of blood on flows
    in a diseased arterial vessel. part 1: Steady flows. Biorheology, 28(3-4):241–262,
    1990.
    [8] D. A. Steinman Ballyk, P. D. and C. R. Ethier. Simulation of non-newtonian blood
    flow in an end-to-side anastomosis. Biorheology, 31(5):565–586, 1993.
    [9] F. J. Walburn and D. J. Schneck. A constitutive equation for whole human blood.
    Biorheology, 13(3):201–210, 1976.
    [10] Y. C. Fung. Biomechanics: Mechanical Properties of Living Tissues. Springer,
    1993.
    [11] Johnston P. R. Corney S. Johnston, B. M. and D. Kilpatrick. Non-newtonian blood
    flow in human right coronary arteries: transient simulations. Journal of Biomechan-
    ics, 39(6):1116–1128, 2006.
    [12] Shirani E. Razavi, A. and M. R. Sadeghi. Numerical simulation of blood pulsatile
    flow in a stenosed carotid artery using different rheological models. Journal of
    Biomechanics, 44(11):2021–2030, 2011.
    [13] Lu X. Y. Chen, J. and W. Wang. Non-newtonian effects of blood flow on hemody-
    namics in distal vascular graft anastomoses. Journal of Biomechanics, 39(11):1983–
    1995, 2006.
    [14] B. Liu and D. Tang. Influence of non-newtonian properties of blood on the wall
    shear stress in human atherosclerotic right coronary arteries. Molecular & Cellular
    Biomechanics: MCB, 8(1):73, 2011.
    [15] VandeVord P. J. Kim, Y. H. and J. S. Lee. Multiphase non-newtonian effects on
    pulsatile hemodynamics in a coronary artery. International Journal for Numerical
    Methods in Fluids, 58(7):803–825, 2008.
    [16] Van de Vosse F. N. Gijsen, F. J. H. and J. D. Janssen. The influence of the nonnewtonian
    properties of blood on the flow in large arteries: steady flow in a carotid
    bifurcation model. Journal of Biomechanics, 32(6):601–608, 1999.
    [17] Vishnoi R. Srivastava, V. P. and P. Sinha. Response of a composite stenosis to nonnewtonian
    blood in arteries. 2015.
    [18] Van de Vosse F. N. Gijsen, F. J. H. and J. D. Janssen. Wall shear stress in backwardfacing
    step flow of a red blood cell suspension. Biorheology, 35(4):263–279, 1998.
    [19] Hatami J. Hatami, M. and D. D. Ganji. Computer simulation of mhd blood conveying
    gold nanoparticles as a third grade non-newtonian nanofluid in a hollow porous
    vessel. Computer Methods and Programs in Biomedicine, 113(2):632–641, 2014.
    [20] Rahman S. U. Gulzar M. M. Nadeem S. Ellahi, R. and K. Vafai. A mathematical
    study of non-newtonian micropolar fluid in arterial blood flow through composite
    stenosis. Appl. Math, 8(4):1567–1573, 2014.
    [21] Y. Wu and X. C. Cai. A fully implicit domain decomposition based ale framework
    for three-dimensional fluid–structure interaction with application in blood flow computation.
    Journal of Computational Physics, 258:524–537, 2014.
    [22] Bracco A. Kim G. E. Imparato, A. M. and R. Zeff. Intimal and neointimal fibrous
    proliferation causing failure of arterial reconstructions. Surgery, 72(6):1007–1017,
    1972.
    [23] D. N. Ku. Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1):399–
    434, 1997.
    [24] L. P. Franca and S. L. Frey. Stabilized finite element methods: Ii. the incompressible
    navier-stokes equations. Computer Methods in Applied Mechanics and Engineering,
    99(2):209–233, 1992.
    [25] J. E. Dennis Jr and R. B. Schnabel. Numerical methods for unconstrained optimization
    and nonlinear equations, volume 16. Siam, 1996.
    [26] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for
    solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
    Computing, 7(3):856–869, 1986.
    [27] A. Klawonn and L. F. Pavarino. Overlapping schwarz methods for mixed linear
    elasticity and stokes problems. Computer Methods in Applied Mechanics and Engineering,
    165(1):233–245, 1998.
    [28] Rittgers S. E. Keynton, R. S. and M. C. S. Shu. The effect of angle and flow rate
    upon hemodynamics in distal vascular graft anastomoses: an in vitro model study.
    Journal of Biomechanical Engineering, 113(4):458–463, 1991.
    [29] Fischer P. F. Loth, F. and H. S. Bassiouny. Blood flow in end-to-side anastomosis.
    Annual Review of Fluid Mechanics, 40(1):367–393, 2008.

    QR CODE
    :::