| 研究生: |
譚凱隆 KAI-LONG TAN |
|---|---|
| 論文名稱: |
基於文本報告進行學生學習成效量測的自動評分框架 Toward a framework of automatic grading for measuring students’ learning performance based on textual reports |
| 指導教授: |
楊鎮華
CHEN-HUA YANG |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 自動化評分 、關鍵字萃取 、語義分析 、文字探勘 、相似性測量 、抄襲檢測 |
| 外文關鍵詞: | Automatic grading, Keyword extraction, Semantic analysis, Text mining, Similarity measurement, Plagiarism detection |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來教育資源已逐漸數位化,有愈來越多的教師將課堂教材及作業藉由網路的方式讓學生能夠不受時空限制學習課堂知識,自動評分即是順應這股教學數位化的潮流而誕生的課題。與傳統的紙本作業人工批改有所不同,機器自動評分可以快速批改並且偵測到人工需要花費大量時間精力才能完成的作業項目,例如教材概念萃取或是抄襲偵測。只要設定好良好的評分標準,機器自動評分可以做為良好的評分依據。
有鑑於此,本研究透過基於語料庫(corpus-based)的文字探勘方法來實作自動評分系統。其中,有別於既有的基於語義(semantic-based)的評分方法,我們提出了基於概念(concept-based)的概念萃取評分方法,以萃取出課程教材中的關鍵概念來對學生作業進行評分。本研究實作了四種不同的自動評分方法,分別為基於語義方法中的潛在語義分析(Latent semantic analysis) 和顯示語義分析(Explicit semantic analysis) 以及基於概念方法中的TF-IDF方法和TextRank方法。
除了評分系統的實作外,我們也有透過比對學生作業和課程教材文本做抄襲檢測。自動評分框架由以下幾個步驟完成:學生作業文本透過文字前處理,並與課堂教材進行文本比對取得評分,最後再用機器的評分和人工評分的比對,以K-means和Spearman’s correlation來驗證評分準確度。本篇論文主要在探討在不同課程設計及文本類型之下,四種自動評分方法的評分效果。而在我們的實驗課程中,基於概念方法中的TextRank的評分效果是最好的。
In recent years, educational resources have gradually digitized. More and more teachers put materials and assignments on internet to enable students to learn classroom knowledge without being restricted by time and space. Automatic grading is the issue that is born in response to the trend of digital teaching. Differ from manual grading, automatic grading is faster and able to detect the problem that require a lot of time and effort to complete, such as textbook concept extraction or plagiarism detection. As long as a good grading standard is set, the machine automatic grading can be used as a good scoring basis.
In view of this, this study implements an automatic grading system through corpus-based text mining method. Among them, unlike the existing semantic-based analysis and grading method, we propose a concept-based grading method to extract the key concepts in the course materials to grade student assignments. In this study, four different automatic scoring methods were implemented, namely the Latent semantic analysis (LSA) and Explicit semantic analysis (ESA) in semantic-based and the TF-IDF method and TextRank method in concept-based.
In addition to the implementation of the scoring system, we also do plagiarism detection by comparing the texts of student assignments and course materials. The automatic scoring framework is completed in the following steps: the student's homework text is pre-processed, and the text is compared with the course materials. Finally, the machine's score and manual score are compared, and K-means and Spearman's correlation are used to verify the accuracy of the score. This paper focuses on the grading effects of four automatic grading methods under different curriculum design and reports text category. In our experimental course, the TextRank grading method in the concept-based got the best result.
Lu, O. H., Huang, A. Y., Huang, J. C., Lin, A. J., Ogata, H., & Yang, S. J. (2018). Applying Learning Analytics for the Early Prediction of Students' Academic Performance in Blended Learning. Journal of Educational Technology & Society, 21(2), 220-232.
Luhanga, F., Yonge, O. J., & Myrick, F. (2008). " Failure to assign failing grades": Issues with grading the unsafe student. International Journal of Nursing Education Scholarship, 5(1), 1-14.
Page, E.B., 1966. The imminence of... grading essays by computer. The Phi Delta Kappan, 47(5), pp.238-243.
Ellis B. Page. 1967. Grading essays by computer: progress report. In Proceedings of the Invitational Conference on Testing Problems, pages 87–100.
Attali, Y., & Burstein, J. (2004). Automated essay scoring with e‐rater® v. 2.0. ETS Research Report Series, 2004(2), i-21.
Shermis, M.D., Burstein, J., Higgins, D. and Zechner, K., 2010. Automated essay scoring: Writing assessment and instruction. International encyclopedia of education, 4(1), pp.20-26
Thomas K. Landauer, Darrell Laham, and Peter W. Foltz. 2003. Automated scoring and annotation of essays with the Intelligent Essay Assessor. In M.D. Shermis and J.C. Burstein, editors, Automated essay scoring: A cross-disciplinary perspective, pages 87–112.
Suzen, N., Gorban, A., Levesley, J., & Mirkes, E. (2018). Automatic Short Answer Grading and Feedback Using Text Mining Methods. arXiv preprint arXiv:1807.10543.
Alikaniotis, D., Yannakoudakis, H., & Rei, M. (2016). Automatic text scoring using neural networks. arXiv preprint arXiv:1606.04289.
Miller, T. (2003). Essay assessment with latent semantic analysis. Journal of Educational Computing Research, 29(4), 495-512.
Mohler, M., & Mihalcea, R. (2009, March). Text-to-text semantic similarity for automatic short answer grading. In Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (pp. 567-575). Association for Computational Linguistics.
Gabrilovich, E., & Markovitch, S. (2007, January). Computing semantic relatedness using wikipedia-based explicit semantic analysis. In IJcAI (Vol. 7, pp. 1606-1611).
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American society for information science, 41(6), 391-407.
Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic keyword extraction from individual documents. Text mining: applications and theory, 1-20.
Beliga, S., Meštrović, A., & Martinčić-Ipšić, S. (2015). An overview of graph-based keyword extraction methods and approaches. Journal of information and organizational sciences, 39(1), 1-20.
Shukla, H., & Kakkar, M. (2016, January). Keyword extraction from educational video transcripts using NLP techniques. In 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence) (pp. 105-108). IEEE.
Menaka, S., & Radha, N. (2013). Text classification using keyword extraction technique. International Journal of Advanced Research in Computer Science and Software Engineering, 3(12).
Simmons, S., & Estes, Z. (2006). Using latent semantic analysis to estimate similarity. In Proceedings of the Cognitive Science Society (pp. 2169-2173).
Islam, M. M., & Hoque, A. L. (2010, December). Automated essay scoring using generalized latent semantic analysis. In 2010 13th International Conference on Computer and Information Technology (ICCIT) (pp. 358-363). IEEE.
Febrita, R. E., & Mahmudy, W. F. (2017). PRE-PROCESSED LATENT SEMANTIC ANALYSIS FOR AUTOMATIC ESSAY GRADING. Jurnal Ilmiah Kursor, 175-180.
Larkey, L. S. (1998, August). Automatic essay grading using text categorization techniques. In SIGIR (Vol. 98, pp. 90-95).
Gomaa, W. H., & Fahmy, A. A. (2012). Short answer grading using string similarity and corpus-based similarity. International Journal of Advanced Computer Science and Applications (IJACSA), 3(11).
Dikli, S. (2006). An overview of automated scoring of essays. The Journal of Technology, Learning and Assessment, 5(1).
Matt, U. V. (1998). Kassandra: the automatic grading system.
Kakkonen, T., Myller, N., Sutinen, E., & Timonen, J. (2008). Comparison of dimension reduction methods for automated essay grading. Journal of Educational Technology & Society, 11(3), 275-288.
Bretag, T., & Mahmud, S. (2009). A model for determining student plagiarism: Electronic detection and academic judgement. Journal of University Teaching & Learning Practice, 6(1), 6.
Potthast, M., Stein, B., Barrón-Cedeño, A., & Rosso, P. (2010, August). An evaluation framework for plagiarism detection. In Proceedings of the 23rd international conference on computational linguistics: Posters (pp. 997-1005). Association for Computational Linguistics.
Clough, P. (2003). Old and new challenges in automatic plagiarism detection. In National Plagiarism Advisory Service, 2003; http://ir. shef. ac. uk/cloughie/index. html.