| 研究生: |
李睿中 Rui-Zhong Lee |
|---|---|
| 論文名稱: |
石墨烯與奈米石墨嵌入式熱介面材料與散熱應用 Graphene and Nanographite Embedded Composites as Thermal Interface Materials For Heat Dissipation Applications |
| 指導教授: | 傅尹坤 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 熱介面材料 、網印技術 、熱管理 |
| 外文關鍵詞: | TIM, Screen Printing, Thermal management |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討熱介面材料(Thermal Interface Materials, TIMs) 之研發及性能探討。因高功率電子元件容易產生大量熱能,故常有熱破壞及熱故障之現象,由於電子元件表面有許多細微裂縫所形成之熱阻抗(Thermal resistance),熱介面材料(TIMs)可應用於電子元件之間以填補元件間之間隙進而提升熱傳導性能。
在這項研究中,主要分為兩部份,第一部分係製備奈米銀顆粒(Silver Nano Particles, SNPs)和單壁奈米碳管(Single Wall Carbon Nanotubes, SWCNTs)採用網印刷製程(Screen Printed)於石墨烯片基板。我們將探討其TIM材料之不同方向(In-plane & Through-plane)之導電率(Electrical conductivity)與導熱率(Thermal conductivity)性能並且實際應用於IGBT與鋁散熱鰭片之間的溫度量測。第二部分則是將石墨烯(Graphene)粉末及奈米銀(Silver)粉末混合於聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)利用網印技術製造熱介面材料並研究其導熱性能。
利用有限元素模擬技術(Finite Element Method)的方法,透過模擬軟體COMSOL 5.0進行模擬,將利用疲勞模組包含建模與焊點,並探討IGBT使用壽命。另針對鋁散熱片之間距對IGBT實際操作進行模擬與實驗討論。
In this thesis, the thermal interface material (Thermal Interface Materials, TIMs) discussion on the development and performance. For high power electronic components easy to produce a large amount of heat, so very hot and the thermal failure of the phenomenon, as electronic component there are many fine cracks on the surface of the formation of thermal resistance, TIMs can be applied to electronic components to fill the gap between components to enhance thermal conductivity.
In this study, the study can be divided into two parts, the first part of preparation of Silver Nano Particles (SNPs) and Single Wall Carbon Nanotubes (SWCNTs) using screen printing process on Graphene substrate Board. We will explore the TIM of materials in different directions (In-plane and Through-plane) of electrical conductivity and thermal conductivity and applied to IGBT temperature measurement with aluminium cooling fins. Second part of Graphene powder and Silver Nano Particles mixed with Polydimethylsiloxane (PDMS) using screen printing technology to create thermal interface material and its thermal conductivity.
[1] D.D.L.Chung, Thermal Interface Materials, J.Mater.Perform. 10(2001)56-59
[2] R.Skuriat, J.F.Li, P.A.Agyakwa, N.Mattey, P.Evansand C.M.Johnson, Degradation of Thermal Interface Materials for High-TemperaturePower Electronics Applications, Microelectron. Reliab.53(2013)1933-1942.
[3] B.Smith, T.BrunschwilerandB.Michel,Comparison of Transient and Static Test Methods for Chip-to-Sink ThermalInterface Characterization, Microelectron.J.40(2008)1379-1386.
[4] R.Kempers,P.Kolodner,A.Lyonand A. J.Robinson,A High-Precision Apparatus for The Characterization of Thermal Interface Materials,Rev Sci Instrum.80(2009)095111-1-095111-11.
[5] R.Mahajan,C.P.Chiuand G.Chrysler,Cooling a Microprocessor Chip, Proc IEEE94(2006)1476-1486.
[6] Tien-Chan Chang, Yiin-KuenFuh, Sheng-XunTu, Yueh-Mu Lee. Application of graphite nanoplatelet-based and nanoparticle composites to thermal interface materials. Micro& Nano Letters, (2015) Vol. 10, pp. 296–301.
[7] Pour Shahid Saeed Abadi P, Leong CK, Chung DDL. Factors that govern the performance of thermal interface materials. J Electron Mater (2009); 38(1):175–92.
[8] Chaowasakoo T, TengHoon Ng, Songninluck J, Stern MB, Ankireddi S. Indium solder as a thermal interface material using fluxless bonding technology. In: 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2009. SEMI-THERM 2009, San Jose CA, (2009) 15–19 March, 180–5.
[9] Marjan Goodarzi, Ahmad Amiri, Mohammad Shahab Goodarzi, Mohammad Reza Safaei, Arash Karimipour, Ehsan Mohseni Languri, Mahidzal Dahari b. Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids. Int. Commun. Heat Mass Transfer, 66 (2015) 172–179
Chen H, Chen M, Di J, Xu G, Li H, Li Q. Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J PhysChem C (2012); 116: 3903–9.
[10] J. Liu, B. Michel, M. Rencz, C. Tantolin, C. Sarno, R. Miessner, K-V. Schuett, X. Tang, S. Demoustier, A. Ziaei, Recent progress of thermal interface material research - an overview, THERMINIC, Rome, Italy, (2008) September 24-26.
[11] Xiaojuan T., Mikhail E. I., Elena B. B, Robert, C. H. Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites, Scientific Reports, (2013) 10, 01710
[12] Xiang, J. L. and Drzal, L. T. Thermal Conductivity of Exfoliated Graphite Nanoplatelet Paper, Carbon 49, (2011)773–778.
[13] R. Prasher, Proc. IEEE 94 (2006) 1571-1585.
[14] W.Y. Zhou, S.H. Qi, H.D. Li, S.Y. Shao. Study on insulating thermal conductive BN/HDPE composites. Thermochim. Acta 452 (2007) 36-42.
[15] K.M.F. Shahil, A.A. Balandin. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 152 (2012) 1331-1340.
[16] Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C. & Chung, D. D. L. Lattice vibrations in graphite and intercalation compounds of graphite. Mater. Sci. Eng.31, (1977) 141–152.
[17] Chung, D. D. L. Exfoliation of graphite. J. Mater. Sci. 22, (1987) 4190–4198.
[18] G.Q. Qi, J. Yang, R.Y. Bao, Z.Y. Liu, W. Yang, B.H. Xie, et al., Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage, Carbon 88 (2015) 196-205.
[19] S. Ye, Q. Zhang, D. Hu, J. Feng, Coreeshell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage, J. Mater Chem. A 3 (7) (2015) 4018e4025.