跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林家慶
Chia-ching Lin
論文名稱: 鹿林山空氣品質背景監測站之背景值分析
Determine the background values of CO, O3 and PM10 collected at Lulin Atmosphere Background Station (LABS).
指導教授: 林能暉
Neng-Huei Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 96
語文別: 中文
論文頁數: 116
中文關鍵詞: 鹿林山背景大氣背景值
外文關鍵詞: Lulin, background
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 吾人利用AGAGE 統計法分析2006 年4 月至2008 年3 月鹿林山
    空氣品質背景監測站資料,以此決定此站背景大氣特徵與微量氣體濃
    度之背景值,並進一步探討各源區的影響。
    分析結果顯示, CO、O3 與PM10 背景值為 79 ppb、27 ppb 與5 μg
    m-3。兩年期間,背景狀態占整體61%,其次為PM10 事件(17%)、
    生質燃燒事件(12%)與CO+ PM10 事件(7%)。西風帶氣流於春季
    經中南半島與華南地區,並帶來當地生質燃燒污染物,造成CO、O3
    與PM10 平均濃度達212 ppb、63 ppb 與27 μg m-3。PM10 事件為穩定
    的大氣狀態使得風速過低,導致地表氣膠不易擴散;而CO 與CO+
    PM10 事件多為境外傳輸自中國的污染物影響。海洋來源氣流的CO、
    O3 與PM10 平均濃度約為69ppb、23 ppb、6.3 μg m-3;大陸性氣流來
    源(西風帶與中國),則約為119 ppb、35 ppb、13.5 μg m-3。
    與其他背景監測站比較,太平洋中的海島測站與鹿林山資料皆顯
    夏季為最乾淨之季節。其中低對流層大氣測站顯示污染物高值出現於
    冬季,而鹿林山與Manua Loa 的高對流層測站顯示高值出現為春季。


    The purpose of this study is to determine the background values of CO, O3 and PM10 collected at Lulin Atmosphere Background Station (LABS) during the period of April 2006 to March 2008, using AGAGE statistical method. The impact of source regions on LABS is also studied.
    As a result, the background values of CO, O3 and PM10 concentrations are 79 ppb, 27 ppb and 5 ?g m-3, respectively. During this two-year period, the events of background condition, PM10, biomass burning and (CO+PM10) accounted for 61%, 17%, 12% and 7% of the time, respectively. In spring, westerly flow across southern China and Indo-China peninsula can bring up the biomass burning pollutants to LABS, resulting in higher average CO, O3 and PM10 concentrations to 212 ppb, 63 ppb and 27 ?g m-3, respectively. PM10 events were primarily due to stable atmosphere with low wind speed, inducing lower dispersion of aerosol particles. CO and CO+ PM10 events were attributed to the long-range transport of pollutants originated from China. Maritime average CO, O3 and PM10 concentrations were 69 ppb, 23 ppb, 6.3 ?g m-3, respectively, while, for continental origin, they were 119 ppb, 35 ppb and 13.5 ?g m-3, respectively.
    Compared with other atmosphere background stations, LABS and those stations located in the Pacific Ocean received cleaner air in summer. For some stations in lower troposphere, maximum levels of pollutants appeared in winter. In contrast, the stations in higher troposphere such as LABS and Mauna Loa Observatory had the maximum levels of pollutants in spring.

    摘要............................................................................................................I Abstract...................................................................................II 致謝......................................................................................................III 目錄..........................................................................................................IV 表目錄.....................................................................................................VI 圖目錄....................................................................................................VII 第一章 前言..............................................................................................1 1.1 研究動機.....................................................................................1 1.2 研究目的.....................................................................................2 第二章 文獻回顧......................................................................................3 2.1 各污染物之化學反應與物理特性...........................................3 2.2 亞洲/全球背景值的探討........................................................12 2.3 統計分析.................................................................................14 第三章 研究方法....................................................................................15 3.1 研究地點與研究設備簡介...............................................................16 3.1.1 研究地點................................................................................16 3.1.2 研究設備簡介........................................................................16 3.2 AGAGE 統計分析方法.....................................................................19 3.2.1 AGAGE 統計分析方法之步驟..............................................19 3.2.2 AGAGE 法使用於鹿林山資料時的變動..............................20 3.3 HYSPLIT 模式簡介(氣流軌跡運算模式)..................................20 3.3.1 HYSPLIT 模式簡介...............................................................20 3.3.2 HYSPLIT 模式傳送機制........................................................21 第四章 結果與討論................................................................................23 4.1 鹿林山基本氣象資料與污染物監測現況........................................23 4.1.1 鹿林山基本氣象資料............................................................23 4.1.2 污染物監測現況....................................................................25 4.2 氣流軌跡分析結果...........................................................................27 4.2.1 氣流軌跡.................................................................................27 4.2.2 氣流軌跡分類.........................................................................28 4.3 山谷風與海陸風之影響分析........................................................29 4.4 背景值分析結果...............................................................................31 4.4.1 背景值與污染值之分佈.........................................................31 4.4.2 各類型事件之日夜變化、季節分佈分析............................32 4.4.3 各類型事件之氣流軌跡分佈................................................35 4.4.4 各類型事件特性小結..........................................................37 4.5 個案分析...........................................................................................38 4.5.1 個案分析 2007/7/1-7 夏季背景............................................38 4.5.2 個案分析 2007/12/21-24 冬季背景值..................................39 4.5.3 個案分析 2007/3/11-19 生質燃燒個案................................39 4.5.4 個案分析 2007/9/12-19 颱風個案.......................................40 4.5.5 個案分析 2007/12/28-2008/1/3 寒潮個案.............................41 4.6 各監項項目與世界其他測站觀測數據之比較...............................42 第五章 總結與未來展望........................................................................44 5.1 總結........................................................................................44 5.2 未來展望.............................................................................46 參考文獻.................................................................................................47 表3.1 鹿林山背景站之監測儀器......................................................53 表3.2 鹿林山背景站之氣象儀器........................................................55 表4.1 各監測資料之月平均值............................................................57 表4.3 CO、O3、PM10 的背景值.....................................................58 表4.4 各類事件於各時間點發生次數(小時值)..............................59 表4.5 各類事件(小時值)的氣流來源分佈圖............................60 表4.6 各類事件(日平均)的氣流來源頻率圖............................60

    林能暉、蔡錫祺、王家麟、李崇德、許桂榮,2006:鹿林山背景站測
    試採樣分析與國際合作之參與及推動研究專案工作計畫。行政
    院環境保護署。
    林能暉、蔡錫祺、王家麟、李崇德、許桂榮,2007:鹿林山背景站測
    試採樣分析與國際合作之參與及推動研究專案工作計畫。行政
    院環境保護署。
    吳承翰,2002:亞洲沙塵暴之模擬。國立中央大學,大氣物理研究所
    碩士論文,中壢。
    徐睿鴻,2007:鹿林山與中壢膠光學垂直特性之監測與比較。大氣物
    理研究所碩士論文,中壢。
    郭俊江,2005:光達及太陽輻射儀之應用:2005 年中壢氣膠光學垂
    直特性及邊界層高度之變化。大氣物理研究所碩士論文,中壢。
    黃威巽,2005:2001 年東亞硫沉降之模擬。國立中央大學,大氣物
    理研究所碩士論文,中壢。
    柳中明,張修武,劉紹臣:蘭嶼背景大氣監測初析。大氣科學,27,
    99-130。
    Andreae, M. O., C. D. Jones, and P. M. Cox (2005), Strong present-day
    aerosol cooling implies a hot future, Nature, 435, 18,187-19,190.
    Aucott, M. L., A. McCulloch, T. E. Graedel, G. Kleiman, P. Midgley, And
    Y.-F. Li, Anthropogenic emissions of trichloromethane (chloroform
    CH3Cl3) and Chlorodifluoro-methane (HCFC-22) : Reactive chlorine emissions inventory , J. Geophys. Res., 104, 8405-8015,
    1999.
    Ackerman, A. S., O. B. Toon, D. E. Stevens, A.J. Heymsfield, V. Ramana
    than, and E.J. Welton (2000), Reduction of tropical cloudiness by
    soot, Science, 288, 1, 1,042-1,047.
    P. Bonasoni, A. Stohl, P. Cristofanelli, F. Calzolari, T. Colombo, F.
    Evangelisti(2000), Background ozone variations at Mt. Cimone
    Station, Atmospheric Environment, 34(2000), 5183-5189
    Draxler, R. R. 1996, Trajectories optimization for balloon flight planning
    Weather and Forecasting ,11, 111-114.
    Draxler, R. R. and G. D. Hess, 1998, An overview of the Hysplit_4
    Modeling System for Trajectories, Dispersion, and Deposition,
    Aust. Met. Mag., 47, 259-308.
    Derwent R.G., M.E. Jenkin, S.M. Saunders, M.J. Pilling, P.G. Simmonds,
    N.R. Passant, G..J. Dollard, P. Dumitrean and A. Kent, 2003: Photochemical
    ozone formation in north-west Europe and its control.
    Atmos. Environ., 37, 1983-1991.
    Finlayson-Pitts, B. J. and J. N. Pitts, Jr., Chemistry of the upper and lower
    atmosphere, Academic Press, 2000.Kaufman, Y. J., et al., Smoke,
    Clouds, and Radiation-Brazil (SCAR-B) experiment. J. Geophys.
    Res., 103, 31,783-31,808.
    Fishman, J. and W. Seiler, Correlative nature of ozone and carbon
    monoxide in the troposphere: Implications for the tropospheric
    oz-one budget, J. Geophys. Res., 88, 3662-3670, 1983.
    Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res., 102,(D6), 6,831-6864.
    Heald, L. C., D. J. Jacob, A. M. Fiore, L. K. Emmons, J. C. Gille, M. N.
    Deeter, J. Warner, D. P. Edwards ,J. H. Crawford, A. J. Hamlin, G.
    W. Sachse , E. V. Browell, M. A. Avery, S. A. Vay, D. J. Westberg,
    D. R. Blake, H. B. Singh, S. T. Sandholom, R. W. Talbot, H. E.
    Fuelberg, Asian outflow and transpacific transport of carbon
    monoxide and ozone pollution: An integrated satellite, air and
    model perspective, J. Geophys. Res., 108(D24), 4804,
    doi:10.1029/2003JD003507.
    Jacobson, M.Z., R. Lu, R.P. Turco, and O.B. Toon, 1996: Development
    and application of a new air pollution modeling system. Part I:
    Gas-phase simulations. Atmos. Environ., 30B, 1939-1963.
    Jin Fnji, S. Jung, J. Kim, K.-R. Kim, T. Chen, D. Li, Y.-A. Paio, Y.-Y.
    Fang, Q.-F. Yin, and Donkoo Lee, Continuous Monitoring and the
    Source in Northeast Asia During 2004-2005, Y.J. Kim and U. Platt
    (eds.), Advanced Environmental Monitoring, 77-89, Springer 2008.
    Kreyszig, E., 1968: Advanced Engineering Mathematics. 2nd Ed., J.
    Wiley and Sons, New York, 898pp.
    Kleinman, L. I., 2005a: The dependence of tropospheric ozone
    production rate on ozone precursors, Atmos. Environ., 39, 575-586.
    Levy, H., Normal atmosphere: Large radical and formaldehyde predicted,
    Science ,173, 141-143, 1971.
    Logan, J. A., M. J. Prather, S. C. Wofsy, and M. B. McElroy,
    Tropospheric chemistry: A global perspective, J. Geophys. Res., 86,
    7210-7254, 1981.
    Lonmann, U., and M. Wild (2005), Solar Dimming, Global Change News
    Letter, 63, 21-22.
    Madronich, S. and C. Granier, Impact of recent total ozone changes on
    tropospheric ozone photodissociation, Hydroxyl radicals, and
    methane trends, Geophys. Res .Lett., 19, 465-467, 1992.NASA Fact
    Sheet, Biomass burning: a hot issue in glogbal change, 2001.
    McConnell R., K. Berhane, F. Gillilnad, S. J. London, T. Islam, W. J.
    Gauderman, E. Avol, H. G. Margolis and J. M. Petters (2002),
    Asthma in exercising children exposed to ozone: a cohort study,
    Lancet, 359, 386-391.
    O’Doherty S., P. G. Simmonds, D. M. Cunnold, H. J. Wang, G. A,
    Sturrock, P. J. Fraser, D. Ryall, R. G. Derwent, R. F. Weiss, P.
    Salameh, B. R. Miller, and R. G. Prinn, In situ chloroform
    measurement at Advanced Global Atmospheric Gases Experiment
    atmospheric research stations form1994 to 1998, J. Geophys. Res.,
    106(D17), 20429-20444, 2000JD900792.
    Oltmans, S. J., A. S. Lefohn, H. E. Scheel, J. M. Harris, H. Levy II, I. E.
    Galbally, E.-G. Brunke, C. P. Meyer, J. A. Lathrop, B. J. Johnson,
    D. S. Shadwick, E. Cuevas, F. J. Schmidlin, D. W. Tarasick, H.
    Claude, J. B. Kerr, O. Uchino and V. Mohnen, 1998: Trends of
    ozone in the troposphere. Geophys. Res. Lett., 25, 139-142.
    Petterssen, S, 1940: Weather Analysis and Forecasting. McGraw-Hill
    Book Company, New York, 221-223
    Pochanart, Pakpong, Hajime Akimoto, Yoshizumi Kajii, Vladimir M.
    Potemkin, Tamara V. Khodzher, Regional background ozone and
    carbon monoxide variations in remote Siberia/East Asia, J.Geophys. Res., 108(D1), 4084, doi:10.1029, 2001JD001412.
    Prather, M. R. Derwent, D. Ehhalt, P. Fraser, E. Sanhueza and X. Zhou,
    Radiative frocing of climate change, 2.2, Other trace gases and
    atmospheric chemistry, in Climate Change 1995, edited by J. T.
    Houghton et al., IPCC/Cambridge Univ. Press, New York, 1996.
    Rao, M.v., H.-I. Lee, R. A. Greelman, J. E. Mullet and K. R. Davis(2000),
    Jasmonic acid signaling modulates ozone-induced hypersensitive
    cell death, Plant Cell, 12, 1633-1648
    Reimann Stefan, A. J. Manning, P. G. Simmonds, D. M. Cunnold, R. H. J.
    Wang, J. Li, A. McCulloch, R. G. Prinn, J. Huang, R. F. Weiss. P. J.
    Fraser, Low European methyl Chloroform emissions inferred from
    long-term atmospheric measurements, Nature, 443, 506-508 (2005)
    Seinfeld, J. H., Atmospheric chemistry and physics of air pollution, 1986.
    Simpson, I, J. D. R. Blake, F. S. Rowland and T. Y. Chen, Implications of
    the recent fluctuations in the growth rate of tropospheric methane,
    Geophys. Res .Lett., 29, 117, 2002.
    Stohl, A.,H. Kromp-Kolb, Origin of ozone in Vienna and surroundings,
    Austria, Atmos. Environ., 28, No. 7, 1255-1266, 1994.
    Twomey, S. , 1974, Pollution and the planetary albedo, Atmos. Environ., 8,
    1251-1256.
    Wang, T., H. L. A. Wong, J. Tang, A. Ding, W. S. Wu, and X. C. Zhang
    (2006), On the origin of surface ozone reactive nitrogen observed
    at a remote mountain site in the northeastern Oinghai-Tibetan
    Plateu, western China, J. Geophys. Res., 111, D08303, doi;10.1029
    /2005JD006527.
    Wild, Oliver and Hajime Akimoto, Intercontinental transport of ozone
    and its precursors in a three-dimensional global CTM, J. Geophys.
    Res., 106 (D21), 27729-27744, ISSN 0148-0227, 2001.
    Zhu, Bin, Hajime Akimoto, Zifa Wang, Kengo Sudo, Jie Tang and Itsushi
    Uno,Why does surface ozone peak in summertime at Waliguan?,
    Geophys. Res. Lett., 31, L17104, doi:10.1029/2004GL020609,2004

    QR CODE
    :::