跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王嘉銘
Chia-Ming Wang
論文名稱: 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測
Multi-frame Motion Estimation Using Adaptive Block Matching
指導教授: 范國清
Kuo-Chin Fan
洪一平
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 59
中文關鍵詞: 多圖像移動偵測光流偵測可調式區塊區塊比對子像素
外文關鍵詞: sub-pixel, motion estimation, optical flow, adaptive window, block matching, multi-frame
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電腦視覺的領域中,運動估測與偵查是一個有趣而重要的主題。許多的運動估測方法都以計算光流場開始,但是,我們也都了解,傳統的光流估測演算法具有雜訊而且正確性低。
    為了獲得更正確的光流估測,我們初步的觀念是認為盡可能利用多張影像資訊。在結合多圖像資訊的光流估測法中,我們採用以相關性為基礎的方法來實作,並且提出兩種不同的方案:一為以參考影像為主的方法,二為遞增法。在實驗當中,我們採用等速度運動的光流模組。對於光流偵測來說,求到子像素的精確度是相當有必要的。我們採用雙線性內插法及三步偵測的搜尋法。最後,我們利用可調式的區塊選擇來做樣板比對。選擇可調式區塊,是採用亮度差值累計法。在實驗結果中,我們可以清楚看到效果的改善。


    Motion estimation and detection is an important and interesting topic in computer vision. Many motion estimation approaches start from the computation of optical flow. However, it is well known that the optical flow vectors estimated with the conventional methods are usually quite noisy and inaccurate.
    To obtain more accurate optical flow estimation of an image, our basic idea is to use as much information as possible contained in a number of image frames. In this thesis, we use the correlation-based method. Two different approaches called the reference-frame approach and the incremental approach are used in estimating multi-frame optical flow. We adopt the constant velocity flow model in all of our work. Moreover, sub-pixel refinement is necessary for every estimations. Bilinear interpolation and three-step searching are used in sub-pixel refinement. Finally, we device the adaptive window selection scheme in template matching. The adaptive windows are selected with an efficient algorithm which is called the difference accumulation algorithm. The accuracy improvement is demonstrated in our experimental results.

    CHAPTER 1 INTRODUCTION1 1.1MOTIVATION1 1.2RELATED WORKS3 1.3ORGANIZATION OF THESIS6 CHAPTER 2 MULTI-FRAME OPTICAL FLOW ESTIMATION7 2.1 CORRELATION-BASED METHOD7 2.1.1 Reference-frame Approach8 2.1.2 Incremental Difference Approach9 2.1.3 Comparison9 2.2 DIFFERENT MOTION MODELS11 2.2.1 Constant Velocity Motion Model12 2.2.2 Constant Acceleration Motion Model13 2.2.3 Affine Motion Model14 2.3 SUB-PIXEL BLOCK MATCHING15 2.3.1 Interpolation16 2.3.2 Searching Strategy19 CHAPTER 3 TEMPLATE MATCHING BY ADAPTIVE WINDOW SELECTION22 3.1 ADAPTIVE WINDOW SELECTION USING TOBOGGAN SEGMENTATION24 3.2 ADAPTIVE WINDOW SELECTION USING DIFFERENCE ACCUMULATION METHOD29 3.3 EXPERIMENTAL RESULTS34 CHAPTER 4 EXPERIMENTAL RESULTS40 4.1 EXPERIMENT 1: MULTI-FRAME OPTICAL FLOW ESTIMATION40 4.2 EXPERIMENT 2: DIFFERENT SUB-PIXEL PRECISION LEVEL ESTIMATION47 4.2.1 Error Analysis47 4.2.2 Pixel-Level Estimation Using Synthetic Images of Pixel-Level Motion47 4.2.3 Different Sub-Pixel Level Estimation Using Synthetic Images of Sub-Pixel Level Motion50 4.3 EXPERIMENT 3: ADAPTIVE WINDOW EFFECTS51 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS55 5.1 CONCLUSIONS55 5.2 FUTURE WORKS55 REFERENCES57

    References
    [1] B. K. P. Horn and B. G. Schunck, “Determining Optical Flow”, Artificial Intelligence, vol. 17, pp.185-203, Aug. 1981.
    [2] B. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision”, DARPA Image Understanding Workshop, pp.121-130, 1981.
    [3] M. J. Black and P. Anandan, “Robust Dynamic Motion Estimation over Time”, Computer Vision and Pattern Recognition, pp.296-302, 1991.
    [4] M. Irani, “Multi-frame Optical Flow Estimation Using Subspace Constraints”, International Conference on Computer Vision, pp.626-633, 1999.
    [5] J. L. Barron, D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt, “Performance of Optical Flow Techniques”, Computer Vision and Pattern Recognition, pp.236-242, 1992.
    [6] S. H. Lai and B. C. Vemuri, “Reliable and Efficient Computation of Optical Flow”, International Journal of Computer Vision 29(2), pp.87-105, 1998.
    [7] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of Optical Flow Techniques”, International Journal of Computer Vision 12(1), pp.43-77, 1994.
    [8] John Y. A. Wang and E. H. Adelson, “Representing Moving Images With Layers”, IEEE Trans. on Image Processing, vol. 3, no.5, pp. 625-638, Sep. 1994.
    [9] F. Bartolini and A. Piva, “Median based relaxation of smoothness constraints in optical flow computation”, Pattern Recognition Letters 18, pp. 649-655, 1997.
    [10] T. Koga, K. Iinuma, A.Hirano, Y.Iijima, and T. Ishiguro, “Motion-Compensated interframe coding for video conferencing”, Nippon Electric Co. Ltd., Kawasaki, Japan, 1981.
    [11] N. Ohta and K.Kanatani, “Moving Object Detection from Optical Flow without Empirical Thresholds”, IEICE trans. of Inf. & System., pp.243-245, 1998.
    [12] Harpreet S. Sawhney, Y. Guo, J. Asmuth and R. Kumar, “Independent Motion Detection in 3D scenes”, International Conference on Computer Vision, pp.612-619, 1999.
    [13] G. Csurka and P. Bouthemy, “Direct Identification of Moving Object and Background from 2D Motion Models”, International Conference on Computer Vision, pp.566-571, 1999.
    [14] X. Yao and Y. Hung, “Keep-Sliding Toboggan Segmentation”, Institute of Information Science, Academia Sinica, Taipei, Taiwan.
    [15] T. Kanade and M. Okutomi, “A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, No.9, pp.920-932, 1994.
    [16] P. Anandan, “A Computational Framework and an Algorithm for the Measurement of Visual Motion”, International Journal of Computer Vision, 2, pp. 283-310, 1989.
    [17] H. Huang, C. Kao, Y. Lin, and Y. Hung, “Disparity-Based View Interpolation for Multiple Perspective Stereoscopic Displays”, Proceedings of SPIE, vol. 3957, pp.102-113, 2000.
    [18] H. Huang, Y. Lin, Y. Hung and C. Fuh, “New Video Object Segmentation Technique Based on Flow-Thread Features for MPEG-4 and Multimedia Systems”, Proceedings of SPIE, vol. 3974, pp.204-212, 2000.
    [19] Y. Chen, Y. Hung and C. Fuh, “A Fast Block Matching Algorithm Based on the Winner-Update Strategy”, Proceedings of the Fourth Asian Conference on Computer Vision, vol. 2, pp. 977-982, 2000.
    [20] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley Publishing Company, 1992.
    [21] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, Addison-Wesley Publishing Company, 1994.
    [22] J. Fairfield, “Toboggan Contrast Enhancement for Contrast Segmentation”, In Proceedings of IEEE Computer Vision and Pattern Recognition, pp.712-716, 1990.

    QR CODE
    :::