| 研究生: |
林依璇 I-Hsuan Lin |
|---|---|
| 論文名稱: |
大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化 Over-expression of Oct4 and Nanog represses the differentiation of C2C12 myoblast cells |
| 指導教授: |
陳盛良
Shen-liang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 豐富潛能性 、分化 、幹細胞 、肌肉發育過程 |
| 外文關鍵詞: | differentiation, pluripotency, stem cell, myogenesis |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小鼠的胚胎幹細胞皆來自於桑葚胚時期的內細胞集團,近年來研究指出,要維持胚胎幹細胞的豐富潛能性需要內在轉錄因子的調控,這些轉錄因子主要包括: Nanog、Oct3/4。在本篇研究中,我們選擇兩個幹細胞轉錄因子 Nanog 與 Oct4 為標的,利用實驗室之 C2C12 細胞,將其大量表現之,進一步觀察它們對於肌肉細胞終極分化的影響。從細胞型態結果顯示,當我們同時大量表現 Nanog 與 Oct4 時之C2C12 穩定細胞株,會抑制肌肉細胞分化的走向。從 RT-PCR 結果顯示,不論在匯集或是分化時期,在有 Oct4 大量表現的細胞株中,肌肉前驅細胞基因 Pax7 有被抑制的情形。而單以匯集時期而言,其中MyoD、MNF、 Pax3、 CD34 與 HoxC10 在各個穩定細胞株中表現量是相似的。而 Myogenin只會表現在 control 與 Nanog 的穩定細胞株中; Myf5 與 Mrt4在同時大量表現 Oct4 與 Nanog 的穩定細胞株中,其表現量是被抑制的。而MEF2C 不會表現在 control 的穩定細胞株中。M-cadherin 在有 Oct4 的穩定細胞株中表現量會被抑制,而 Stella 則是上升的。然而,若是以分化時期而言,當與其他穩定細胞株相比時,MyoD、Myogenin、Myf5、Mrf4、MEF2C 與 M-cadherin,他們在同時表現 Oct4 與 Nanog 的穩定細胞株其表現量是被抑制的。而 Pax3 不會表現在單獨 Nanog 的穩定細胞株中。HoxC10 在 Oct4的穩定細胞株中,表現量是被抑制的。當我們利用流式細胞儀來觀察各個穩定細胞株的細胞週期時,可以發現在匯集時期它們的差異並不大,但是,在分化時期各個穩定細胞株的變異性就很大了。我們為了確認 Pax7 是否會被 Oct4 調控;於是,我們分別建構了 Pax7 2K、3.8K 及 5K 的啟動子,來進一步確認 OCT4是否會調控 Pax7。由 transfection 與 EMSA 結果顯示,OCT4確實調控 Pax7 的表現。
Embryonic stem (ES) cells were originally derived from the inner cell mass of blastocyst stage mouse embryos. Recent studies have shown that two transcription factors, Nanog and Oct3/4, are responsible for sustaining the pluripotency of stem cells. In this study, we have over-expressed Nanog and Oct4, either individually or simultaneously, in C2C12 cells by retrovirus infection. We observed that the terminal differentiation of C2C12 myoblasts was repressed by Nanog-Oct4 over-expression. After analyzing RT-PCR expression pattern, either confluence (CMB) or differentiation (DM) stage, we found that expression of Pax7 is down-regulated in Oct3/4 over-expressed cells, but not in other stable clones. In the CMB stage, MyoD, MNF, Pax3, CD34, and HoxC10 were similarly expressed among stable clones. And Myogenin only expressed in the control and Nanog stable clones. Myf5 and Mrf4 were down-regulated in the double expression clone. MEF2C expressed in all stable clones, except for C2C12 control. M-cadherin was down-regulated , but Stella was up-regulated in the Oct4 stable clone. In the DM5 stage, MyoD, Myogenin, Myf5, Mrf4, MEF2C, and M-cadherin were down-regulation compared with others stable clones. Pax3 was down-regulated only in Nanog stable clone. HoxC10 was down-regulated in Oct4 stable clone. Using flow cytometric, we observe each of stable clones the phase of G0/G1, S, and G2/M is about 55%, 15%, and 26% at the PMB stage. In the CMB stage, Nanog and Oct4 stable clones were different form C2C12 control. To examine if Pax7 is targeted by OCT4 directly. We have made three clones of Pax7 promoter- 2K, 3.8K and 5K. The Pax7 3.8K and 5K promoter regions were regulated by OCT4. One of the putative Oct3/4 sites(from -4716 to -4776)could be bound by Oct3/4, as demonstrated by EMSA.
Bain, G., Maandag, E. C., Izon, D. J., Amsen, D., Kruisbeek, A. M., Weintraub, B. C.,
Krop, I., Schlissel, M. S., Feeney, A. J., van Roon, M., and et al. (1994). E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885-892.
Basch, M. L., Bronner-Fraser, M., and Garcia-Castro, M. I. (2006). Specification of the
neural crest occurs during gastrulation and requires Pax7. Nature 441, 218-222.
Ben-Yair, R., and Kalcheim, C. (2005). Lineage analysis of the avian dermomyotome
sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 132, 689-701.
Bischoff, R., and Heintz, C. (1994). Enhancement of skeletal muscle regeneration. Dev
Dyn 201, 41-54.
Blackwell, T. K., and Weintraub, H. (1990). Differences and similarities in
DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250, 1104-1110.
Boiani, M., and Scholer, H. R. (2005). Regulatory networks in embryo-derived
pluripotent stem cells. Nat Rev Mol Cell Biol 6, 872-884.
Buckingham, M. (2001). Skeletal muscle formation in vertebrates. Curr Opin Genet
Dev 11, 440-448.
Chambers, C., Cvekl, A., Sax, C. M., and Russell, P. (1995). Sequence, initial functional
analysis and protein-DNA binding sites of the mouse beta B2-crystallin-encoding gene. Gene 166, 287-292.
Chambers, I., and Smith, A. (2004). Self-renewal of teratocarcinoma and embryonic
stem cells. Oncogene 23, 7150-7160.
Chi, N., and Epstein, J. A. (2002). Getting your Pax straight: Pax proteins in
development and disease. Trends Genet 18, 41-47.
Cinnamon, Y., Ben-Yair, R., and Kalcheim, C. (2006). Differential effects of
N-cadherin-mediated adhesion on the development of myotomal waves. Development 133, 1101-1112.
Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P., and Csoka, A. B. (2006).
Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177-185.
Denetclaw, W. F., and Ordahl, C. P. (2000). The growth of the dermomyotome and
formation of early myotome lineages in thoracolumbar somites of chicken embryos. Development 127, 893-905.
Evans, M. J., and Kaufman, M. H. (1981). Establishment in culture of pluripotential
cells from mouse embryos. Nature 292, 154-156.
Hasty, P., Bradley, A., Morris, J. H., Edmondson, D. G., Venuti, J. M., Olson, E. N., and
Klein, W. H. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364, 501-506.
Jostes, B., Walther, C., and Gruss, P. (1990). The murine paired box gene, Pax7, is
expressed specifically during the development of the nervous and muscular system. Mech Dev 33, 27-37.
Kassar-Duchossoy, L., Giacone, E., Gayraud-Morel, B., Jory, A., Gomes, D., and
Tajbakhsh, S. (2005). Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19, 1426-1431.
Luo, L., Liao, Y. J., Jan, L. Y., and Jan, Y. N. (1994). Distinct morphogenetic functions
of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8, 1787-1802.
Maroto, M., Reshef, R., Munsterberg, A. E., Koester, S., Goulding, M., and Lassar, A. B. (1997). Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89, 139-148.
Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78, 7634-7638.
Matsuda, T., Nakamura, T., Nakao, K., Arai, T., Katsuki, M., Heike, T., and Yokota, T. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. Embo J 18, 4261-4269.
McLoon, L. K., Thorstenson, K. M., Solomon, A., and Lewis, M. P. (2007). Myogenic precursor cells in craniofacial muscles. Oral Dis 13, 134-140.
Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., Nonaka, I., and Nabeshima, Y. (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364, 532-535.
Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391.
Nishiyama, T., Kii, I., and Kudo, A. (2004). Inactivation of Rho/ROCK signaling is crucial for the nuclear accumulation of FKHR and myoblast fusion. J Biol Chem 279, 47311-47319.
Niwa, H. (2001). Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 26, 137-148.
Niwa, H., Burdon, T., Chambers, I., and Smith, A. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12, 2048-2060.
Norton, J. D. (2000). ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113 ( Pt 22), 3897-3905.
Novitch, B. G., Mulligan, G. J., Jacks, T., and Lassar, A. B. (1996). Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J Cell Biol 135, 441-456.
Odelberg, S. J., Kollhoff, A., and Keating, M. T. (2000). Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099-1109.
Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D., and Niwa, H. (2006). Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem Biophys Res Commun 343, 159-166.
Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., and Hamada, H. (1990) Cell 60(3), 461-472
Oustanina, S., Hause, G., and Braun, T. (2004). Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. Embo J 23, 3430-3439.
Pan, G., Li, J., Zhou, Y., Zheng, H., and Pei, D. (2006). A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. Faseb J 20, 1730-1732.
Pan, G., and Thomson, J. A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17, 42-49.
Payen, E., Pailhoux, E., Gianquinto, L., Hayes, H., Le Pennec, N., Bezard, J., and Cotinot, C. (1997). The ovine SOX2 gene: sequence, chromosomal localization and gonadal expression. Gene 189, 143-147.
Prelle, K., Wobus, A. M., Krebs, O., Blum, W. F., and Wolf, E. (2000). Overexpression of insulin-like growth factor-II in mouse embryonic stem cells promotes myogenic differentiation. Biochem Biophys Res Commun 277, 631-638.
Ralston, A., and Rossant, J. (2005). Genetic regulation of stem cell origins in the mouse embryo. Clin Genet 68, 106-112.
Reed, P. W., and Lardy, H. A. (1972). A23187: a divalent cation ionophore. J Biol Chem 247, 6970-6977.
Relaix, F., Rocancourt, D., Mansouri, A., and Buckingham, M. (2004). Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev 18, 1088-1105.
Relaix, F., Rocancourt, D., Mansouri, A., and Buckingham, M. (2005). A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435, 948-953.
Sabourin, L. A., and Rudnicki, M. A. (2000). The molecular regulation of myogenesis. Clin Genet 57, 16-25.
Sachinidis, A., Schwengberg, S., Hippler-Altenburg, R., Mariappan, D., Kamisetti, N., Seelig, B., Berkessel, A., and Hescheler, J. (2006). Identification of small signalling molecules promoting cardiac-specific differentiation of mouse embryonic stem cells. Cell Physiol Biochem 18, 303-314.
Sartorelli, V., and Caretti, G. (2005). Mechanisms underlying the transcriptional regulation of skeletal myogenesis. Curr Opin Genet Dev 15, 528-535.
Schafer, B. W., and Mattei, M. G. (1993). The human paired domain gene PAX7 (Hup1) maps to chromosome 1p35-1p36.2. Genomics 17, 249-251.
Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K., and Gruss, P. (1990) Nature 344(6265), 435-439
Scholzen, T., and Gerdes, J. (2000). The Ki-67 protein: from the known and the unknown. J Cell Physiol 182, 311-322.
Seale, P., Ishibashi, J., Holterman, C., and Rudnicki, M. A. (2004). Muscle satellite cell-specific genes identified by genetic profiling of MyoD-deficient myogenic cell. Dev Biol 275, 287-300.
Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M. A. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777-786.
Seo, H. C., Saetre, B. O., Havik, B., Ellingsen, S., and Fjose, A. (1998). The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mech Dev 70, 49-63.
Shapiro, D. N., Sublett, J. E., Li, B., Valentine, M. B., Morris, S. W., and Noll, M. (1993). The gene for PAX7, a member of the paired-box-containing genes, is localized on human chromosome arm 1p36. Genomics 17, 767-769.
Stern, H. M., Brown, A. M., and Hauschka, S. D. (1995). Myogenesis in paraxial mesoderm: preferential induction by dorsal neural tube and by cells expressing Wnt-1. Development 121, 3675-3686.
Stoykova, A., and Gruss, P. (1994). Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14, 1395-1412.
Strachan, T., and Read, A. P. (1994). PAX genes. Curr Opin Genet Dev 4, 427-438.
Tajbakhsh, S., Rocancourt, D., Cossu, G., and Buckingham, M. (1997). Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89, 127-138.
Wan, X., and Helman, L. J. (2002). Effect of insulin-like growth factor II on protecting myoblast cells against cisplatin-induced apoptosis through p70 S6 kinase pathway. Neoplasia 4, 400-408.
Yablonka-Reuveni, Z. (1995). Development and postnatal regulation of adult myoblasts. Microsc Res Tech 30, 366-380.
Yagami-Hiromasa, T., Sato, T., Kurisaki, T., Kamijo, K., Nabeshima, Y., and Fujisawa-Sehara, A. (1995). A metalloprotease-disintegrin participating in myoblast fusion. Nature 377, 652-656.
Zebedin, E., Sandtner, W., Galler, S., Szendroedi, J., Just, H., Todt, H., and Hilber, K. (2004). Fiber type conversion alters inactivation of voltage-dependent sodium currents in murine C2C12 skeletal muscle cells. Am J Physiol Cell Physiol 287, C270-280.
Zhu, Z., and Miller, J. B. (1997). MRF4 can substitute for myogenin during early stages of myogenesis. Dev Dyn 209, 233-241.
Ziman, M. R., Fletcher, S., and Kay, P. H. (1997). Alternate Pax7 transcripts are expressed specifically in skeletal muscle, brain and other organs of adult mice. Int J Biochem Cell Biol 29, 1029-1036.
Ziman, M. R., Thomas, M., Jacobsen, P., and Beazley, L. (2001). A key role for Pax7 transcripts in determination of muscle and nerve cells. Exp Cell Res 268, 220-229.