| 研究生: |
倪可詩 Consolatha Sileyo Nicholaus |
|---|---|
| 論文名稱: |
坦尚尼亞姆貝亞和松圭地區環境因素影響土地覆蓋變化的地理空間分析(2018-2022年) Geospatial Analysis of Environmental Factors Influencing Land Cover Change in Mbeya and Songwe, Tanzania (2018-2022) |
| 指導教授: |
蔡富安
Tsai, Fuan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 土地覆蓋變遷 、NDVI 、地表溫度 、遙測 、多元線性回歸 |
| 外文關鍵詞: | Land cover change, NDVI, Land surface temperature, Remote sensing, Multiple linear regression |
| 相關次數: | 點閱:35 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
土地覆蓋變遷為人類對地球系統最主要的改變形式之一,對環境退化具有顯著影響。本研究針對坦尚尼亞南部高地的姆貝亞(Mbeya)與松圭(Songwe)地區,進行2018年至2022年間多時期土地覆蓋變遷動態分析。研究量化了環境衝擊,評估地表溫度(Land Surface Temperature, LST)與正規化植生指數(Normalized Difference Vegetation Index, NDVI)之間的關係,並辨識出主要的環境驅動因子。本研究運用隨機森林分類法處理多時期Sentinel-2(10公尺解析度)衛星影像,產製土地覆蓋分類圖,其總體分類精度達86.35%,Kappa係數為83.13%。研究結果顯示當地景觀結構發生明顯變化,其中農業用地擴張為主要變遷因素,增加幅度達41.39%;相對地,森林覆蓋減少9.08%,草地覆蓋則減少48.68%。進一步分析顯示,森林減少面積中有64.1%轉為農地,77.8%轉為灌木地。
NDVI分析顯示顯著的空間與時間變異,其中高地森林地區NDVI值最高(0.57–0.92),而農業與都市地區則相對偏低(0.02–0.44)。LST分析則揭示各類土地覆蓋類型具有明顯的熱特徵變化,高地森林地區溫度最低,約為11.7°C,而裸地與都市區域最高可達44.5°C。研究亦發現明顯的冷卻效應,高植被區溫度比建成區低3–5°C;反之,都市發展則造成熱島效應,使溫度高出鄰近植被區2–4°C。NDVI與LST之間呈現高度負相關(r = -0.738, p < 0.001),顯示植被在熱調節中扮演關鍵角色,其中每增加0.1的NDVI,約可降低地表溫度1.5°C。多元線性回歸模型顯示具中度相關性(R² = 0.5584–0.5867),可解釋55–59%的熱–植生關係變異。環境因子分析結果指出,植被密度為主要的熱調節因子,其次為土地覆蓋類型、季節性氣候模式、地形條件、水資源、人為管理措施與土壤性質等。本研究指出,NDVI高於0.6的高地山地森林具備明顯的蒸散作用與樹冠遮蔽功能,為重要的熱庇護區;相對地,農業強化與都市擴張則加劇熱壓力。此外,植被與溫度之間的關係於不同年度間表現出穩定性,年度變異小於1%,顯示本研究結果具潛力應用於長期環境規劃與氣候調適策略。
關鍵詞:土地覆蓋變遷、NDVI、地表溫度、遙測、多元線性回歸
Abstract
Land cover change represents a primary human alteration to the Earth system, substantially contributing to environmental degradation. This research analyzed the dynamics of multi-pretemporal land cover changes in the Mbeya and Songwe regions of Tanzania's Southern Highlands between 2018 and 2022. The study quantified environmental impacts, measured the relationships between land surface temperature (LST) and normalized difference vegetation index (NDVI), and identified significant environmental drivers of these processes. Utilizing random forest classification, multi-temporal Sentinel-2 (10m) satellite data yielded land cover maps with an overall accuracy of 86.35% and a Kappa coefficient of 83.13%. The observations indicated landscape changes, with agricultural expansion identified as the principal factor, increasing by 41.39% while forest cover decreased by 9.08% and grasslands diminished by 48.68%. Analysis of the transition matrix indicated that 64.1% of forest reduction was converted to cropland, while 77.8% transitioned to shrubland.
The analysis of the Normalized Difference Vegetation Index (NDVI) revealed significant spatial and temporal variations, with highland forested regions exhibiting the highest values (0.57-0.92) compared to lower values in agricultural and urban areas (0.02-0.44). Land Surface Temperature (LST) patterns exhibited clear thermal signatures across various land cover types, with temperatures ranging from 11.7°C in highland forested areas to 44.5°C in bare land and urban environments. The most substantial cooling effect was demonstrated, with temperatures maintained at 3-5°C lower than built-up areas, whereas urban development resulted in heat islands that were 2-4°C warmer than adjacent vegetated regions. A strong negative correlation (r = -0.738, p < 0.001) between NDVI and LST indicates the significant role of vegetation in thermal regulation, with each 0.1 increase in NDVI associated with an approximate 1.5°C decrease in surface temperature. Multiple linear regression models demonstrated moderate predictive capability (R² = 0.5584-0.5867), accounting for 55-59% of the variance in thermal-vegetation relationships.
The analysis of environmental factors identified vegetation density as the principal thermal regulator, followed by land cover type, seasonal climate patterns, topographic controls, water availability, human management practices, and soil properties. The study indicates that highland montane forests with NDVI values above 0.6 serve as essential thermal refugia due to evapotranspiration and canopy shading. In contrast, agricultural intensification and urban expansion contribute to considerable thermal stress. The temporal stability of vegetation-temperature relationships, with minimal year effects accounting for less than 1% variance, indicates dependable patterns for long-term environmental planning and climate adaptation strategies.
Key words: Land cover change, NDVI, land surface temperature, remote sensing, and multiple linear regression
References
Alkama, R., & Cescatti, A. (2016). Biophysical climate impacts of recent changes in global forest cover. Science, 351(6273), 600-604.
Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and urban planning, 97(3), 147-155.
Bui, Q.-T., Jamet, C., Vantrepotte, V., Mériaux, X., Cauvin, A., & Mograne, M. A. (2022). Evaluation of sentinel-2/MSI atmospheric correction algorithms over two contrasted French coastal waters. Remote Sensing, 14(5), 1099.
Burgess, N. D., et al. (2007). "The biological importance of the Eastern Arc Mountains of Tanzania and Kenya." Biological conservation 134(2): 209-231.
Braimoh, A. and P. Vlek (2004). "Impact of land cover change on soil properties in Northern Ghana." Land Degradation & Development 15: 65-74.
Chilagane, N. A. (2017). Impacts of Land use and Land cover changes on the ecosystem services of the Little Ruaha River Catchment, Tanzania Sokoine University of Agriculture].
Clevers, J. G. and A. A. Gitelson (2013). "Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3." International Journal of Applied Earth Observation and Geoinformation 23: 344-351.
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46.
Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: principles and practices. CRC press.
Dastan, D., et al. (2023). "Influence of heat treatment on H2S gas sensing features of NiO thin films deposited via thermal evaporation technique." Materials Science in Semiconductor Processing 154: 107232.
Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015). MODIS vegetation index user’s guide (MOD13 series). University of Arizona: Vegetation Index and Phenology Lab, 35, 2-33.
Drusch, M., et al. (2012). "Sentinel-2: ESA's optical high-resolution mission for GMES operational services." Remote sensing of environment 120: 25-36.
Estoque, R. C. (2023). Assessing Sustainability over Space and Time: The Emerging Roles of GIScience and Remote Sensing, MDPI. 15: 2764.
FAO, T. (2022). The state of the world’s forests 2022. Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Rome, FAO.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote sensing of environment, 114(1), 168-182.
Gao, Y., et al. (2020). "Remote sensing of forest degradation: a review." Environmental Research Letters 15(10): 103001.
Gascon, F., et al. (2017). "Copernicus Sentinel-2A calibration and products validation status." Remote Sensing 9(6): 584.
Gaur, R., & Singh, H. (2024). Urban Tree Responses to Climate Change and Environmental Pollution. In Urban Forests, Climate Change and Environmental Pollution (pp. 279-305). Springer.
Geist, H. J., & Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience, 52(2), 143-150.
Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira, R. S., Uriarte, M., & Gentine, P. (2018). Tall Amazonian forests are less sensitive to precipitation variability. Nature Geoscience, 11(6), 405-409.
Gonçalves, J., Pôças, I., Marcos, B., Mücher, C. A., & Honrado, J. P. (2019). SegOptim—A new R package for optimizing object-based image analyses of high-spatial resolution remotely-sensed data. International Journal of Applied Earth Observation and Geoinformation, 76, 218-230.
Goward, S. N., Tucker, C. J., & Dye, D. G. (1985). North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio, 64(1), 3-14.
Haashemi, S., Weng, Q., Darvishi, A., & Alavipanah, S. K. (2016). Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sensing, 8(4), 352.
Helder, D., Markham, B., Morfitt, R., Storey, J., Barsi, J., Gascon, F., Clerc, S., LaFrance, B., Masek, J., & Roy, D. P. (2018). Observations and recommendations for the calibration of Landsat 8 OLI and Sentinel 2 MSI for improved data interoperability. Remote Sensing, 10(9), 1340.
Hemp, A. (2009). Climate change and its impact on the forests of Kilimanjaro. African Journal of Ecology, 47, 3-10.
Hermosilla, T., et al. (2025). "Expansion of treed area over Canada’s forested ecosystems: spatial and temporal trends." Forestry: An International Journal of Forest Research: cpaf015.
Immitzer, M., et al. (2016). "First experience with Sentinel-2 data for crop and tree species classifications in central Europe." Remote Sensing 8(3): 166.
Jew, E. K., Dougill, A. J., Sallu, S. M., O’Connell, J., & Benton, T. G. (2016). Miombo woodland under threat: Consequences for tree diversity and carbon storage. Forest Ecology and Management, 361, 144-153.
Jin, Y., Liu, X., Chen, Y., & Liang, X. (2018). Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. International journal of remote sensing, 39(23), 8703-8723.
Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M. R., Kuemmerle, T., Meyfroidt, P., & Mitchard, E. T. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8(1), 70.
Kaaya, L. T., & Lugomela, G. V. (2015). Aquatic Ecosystem Services and Management in East Africa: The Tanzania Case. Ecosystem Services and River Basin Ecohydrology, 233-250.
Kalugendo, J. Building the Capacity of Local People to Increase Accountability in Managing and Utilizing Forest Resources for Rural Development: A case of Tanzania.
Kangalawe, R. Y. and J. G. Lyimo (2013). "Climate change, adaptive strategies and rural livelihoods in semiarid Tanzania."
Kangalawe, R. Y. (2017). Climate change impacts on water resource management and community livelihoods in the southern highlands of Tanzania. Climate and Development, 9(3), 191-201.
Karki, R., et al. (2025). "Impact of forest cover and land use change on tree species diversity and carbon stocks in Shivapuri Nagarjun National Park, Nepal." Discover Environment 3(1): 1-15.
Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N., & Goldberg, A. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of climate, 23(3), 618-633.
Kashaigili, J., & Majaliwa, A. (2013). Implications of land use and land cover changes on hydrological regimes of the Malagarasi River, Tanzania.
Kennedy, R. E., et al. (2018). "Implementation of the LandTrendr algorithm on google earth engine." Remote Sensing 10(5): 691.
Kilawe, E. and D. Habimana (2016). "Forestry contribution to national economy and trade in Ethiopia, Kenya and Uganda."
Kimambo, E. A., et al. (2025). "Emission Mitigation from Sacred Forests on Addressing Climate Action Goals in the North Pare Mountains, Tanzania." African Journal of Climate Change and Resource Sustainability 4(1): 74-83.
Kimaro, P. J. (2023). "Contribution of microfinance institutions in the growth of small and medium enterprises in Tanzania: evidence from trade enterprises in Moshi municipality." PanAfrican Journal of Governance and Development 4(2): 93-121.
Kiunsi, H. (2017). Transfer Pricing in East Africa: Tanzania and Kenya in Comparative Perspective The Open University of Tanzania].
Koranteng, A., et al. (2023). "Urbanization and other land use land cover change assessment in the Greater Kumasi Area of Ghana." Journal of Geoscience and Environment Protection 11(5): 363-383.
Kulyakwave, P. D., et al. (2023). "Climate and socio-economic factors affecting the adoption of irrigation practices for improved rice yield in Mbeya Region, Tanzania." Journal of Environmental Science and Management 26(1).
Lambin, E. F., et al. (2006). Introduction: local processes with global impacts. Land-use and land-cover change: Local processes and global impacts, Springer: 1-8.
Lawrence, D., & Vandecar, K. (2015). Effects of tropical deforestation on climate and agriculture. Nature climate change, 5(1), 27-36.
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Barrett, K. (2023). Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. The Australian National University.
Lee, H., et al. (2023). "IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland."
Li, J., & Roy, D. P. (2017). A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing, 9(9), 902.
Li, X., Barriot, J.-P., Lou, Y., Zhang, W., Li, P., & Shi, C. (2023). Towards millimeter-level accuracy in GNSS-based space geodesy: A review of error budget for GNSS precise point positioning. Surveys in Geophysics, 44(6), 1691-1780.
Liu, Z., et al. (2023). "Response of vegetation phenology to urbanization in urban agglomeration areas: A dynamic urban–rural gradient perspective." Science of the Total Environment 864: 161109.
Luyssaert, S., et al. (2014). "Land management and land-cover change have impacts of similar magnitude on surface temperature." Nature climate change 4(5): 389-393.
Ma, X., Yang, Z., Wang, J., & Han, F. (2022). Mapping population on Tibetan Plateau by fusing VIIRS data and nighttime Tencent location-based services data. Ecological Indicators, 139, 108893.
Mackenzie, A. (2022). "Experience distributed in the biodiversity science-base." Science & Technology Studies 35(3): 70-91.
Maeda, E. E., & Hurskainen, P. (2014). Spatiotemporal characterization of land surface temperature in Mount Kilimanjaro using satellite data. Theoretical and Applied Climatology, 118, 497-509.
Maleki, M., Arriga, N., Barrios, J. M., Wieneke, S., Liu, Q., Peñuelas, J., Janssens, I. A., & Balzarolo, M. (2020). Estimation of gross primary productivity (GPP) phenology of a short-rotation plantation using remotely sensed indices derived from Sentinel-2 images. Remote Sensing, 12(13), 2104.
Maleki, S., Mohajeri, S. H., Mehraein, M., & Sharafati, A. (2024). Lake evaporation in arid zones: Leveraging Landsat 8's water temperature retrieval and key meteorological drivers. Journal of Environmental Management, 355, 120450.
Manakos, I., Tomaszewska, M., Gkinis, I., Brovkina, O., Filchev, L., Genc, L., Gitas, I. Z., Halabuk, A., Inalpulat, M., & Irimescu, A. (2018). Comparison of global and continental land cover products for selected study areas in South Central and Eastern European region. Remote Sensing, 10(12), 1967.
Manoli, G., et al. (2020). "Seasonal hysteresis of surface urban heat islands." Proceedings of the National Academy of Sciences 117(13): 7082-7089.
Maxwell, A. E., et al. (2018). "Implementation of machine-learning classification in remote sensing: An applied review." International journal of remote sensing 39(9): 2784-2817.
Mbululo, Y. and F. Nyihirani (2012). "Climate characteristics over southern highlands Tanzania."
Merlin, O., Stefan, V. G., Amazirh, A., Chanzy, A., Ceschia, E., Er‐Raki, S., Gentine, P., Tallec, T., Ezzahar, J., & Bircher, S. (2016). Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta‐analysis approach. Water Resources Research, 52(5), 3663-3684.
Mmbaga, N. F., et al. (2023). Energy Consumption and Economic Growth Nexus in East African Sub-Region: Interactive Dynamics of Human Capital." African Journal of Economic Review 11(5): 50-69.
Mmbaga, N. E. and P. C. Athumani (2024). "Community perceptions on conservation of Mount Rungwe Nature Forest Reserve, Tanzania: opportunities, threats, and challenges." Discover Conservation 1(1): 18.
MRISHO, H. (2024). The Effect of Human-Wild Life Conflicts on Community Development among People in Wanging'ombe District in Tanzania, IAA.
Msofe, N. K., Sheng, L., & Lyimo, J. (2019). Land use change trends and their driving forces in the Kilombero Valley Floodplain, Southeastern Tanzania. Sustainability, 11(2), 505.
Mukherjee, I. and U. K. Singh (2020). Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques." Catena 194: 104681.
Munishi, S., & Jewitt, G. (2019). Degradation of Kilombero Valley Ramsar wetlands in Tanzania. Physics and Chemistry of the Earth, PartsA/B/C,112,216227.https://doi.org/https://doi.org/10.1016/j.pce.2019.03.008
Mwakalukwa, E. E., et al. (2024). "Carbon storage in a dry Miombo woodland area in Tanzania." Southern Forests: Journal of Forest Science 86(2): 115-124.
Mwampamba, T. H. (2007).Has the woodfuel crisis returned? Urban charcoal consumption in Tanzania and its implications to present and future forest availability." Energy policy 35(8): 4221-4234.
Neinavaz, E., Skidmore, A. K., & Darvishzadeh, R. (2020). Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. International Journal of Applied Earth Observation and Geoinformation, 85, 101984.
Newmark, W. D., & McNeally, P. B. (2018). Impact of habitat fragmentation on the spatial structure of the Eastern Arc forests in East Africa: Implications for biodiversity conservation. Biodiversity and Conservation, 27, 1387-1402.
Nguyen, T. T. (2020). Landsat time-series images-based urban heat island analysis: The effects of changes in vegetation and built-up land on land surface temperature in summer in the Hanoi metropolitan area, Vietnam. Environment and Natural Resources Journal, 18(2), 177-190.
Nicholson, S. E. (2017). Climate and climatic variability of rainfall over eastern Africa. Reviews of Geophysics, 55(3), 590-635.
Nobert, J., & Jeremiah, J. (2012). Hydrological response of watershed systems to land use/cover change. a case of Wami River Basin. Open Hydrology Journal, 6, 78-87.
Ntukey, L. T., Munishi, L. K., & Treydte, A. C. (2022). Land use land/cover change reduces woody plant diversity and carbon stocks in a lowland coastal forest ecosystem, Tanzania. Sustainability, 14(14), 8551.
Olofsson, P., Arévalo, P., Espejo, A. B., Green, C., Lindquist, E., McRoberts, R. E., & Sanz, M. J. (2020). Mitigating the effects of omission errors on area and area change estimates. Remote sensing of environment, 236, 111492.
Pasquarella, V. J., et al. (2018).Extensive gypsy moth defoliation in Southern New England characterized using Landsat satellite observations." Biological Invasions 20: 3047-3053.
Peng, X., et al. (2019). Elevation-influenced variation in canopy and stem phenology of Qinghai spruce, central Qilian Mountains, northeastern Tibetan Plateau. Trees 33: 707-717.
Pontius Jr, R. G. and M. Millones (2011).Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International journal of remote sensing 32(15): 4407-4429.
Praticò, S., Solano, F., Di Fazio, S., & Modica, G. (2021). Machine learning classification of mediterranean forest habitats in google earth engine based on seasonal sentinel-2 time-series and input image composition optimisation. Remote Sensing, 13(4), 586.
Prăvălie, R., Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Chappell, A., Miguez-Macho, G., Maggi, F., Peng, J., & Niculiță, M. (2024). A unifying modelling of multiple land degradation pathways in Europe. Nature Communications, 15(1), 3862.
Quintano, C., Fernández-Manso, A., Calvo, L., Marcos, E., & Valbuena, L. (2015). Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems. International Journal of Applied Earth Observation and Geoinformation, 36, 1-12.
Rahimi, E., Dong, P., & Jung, C. (2025). Global NDVI-LST correlation: temporal and spatial patterns from 2000 to 2024. Environments, 12(2), 67.
Richter, R. (2011). Atmospheric correction methods for optical remote sensing imagery of land. Advances in Environmental Remote Sensing: Remote Sensing Applications, Taylor Francis: 161-172.
Rao, Z., Wen, Y., & Zhao, J. (2019). Thermal performance of battery thermal management system using composite matrix coupled with mini‐channel. Energy Storage. https://doi.org/10.1002/est2.59
Rodríguez, J. P., Beard Jr, T. D., Bennett, E. M., Cumming, G. S., Cork, S. J., Agard, J., Dobson, A. P., & Peterson, G. D. (2006). Trade-offs across space, time, and ecosystem services. Ecology and society, 11(1).
Rudel, R. A., et al. (2011). Environmental exposures and mammary gland development: state of the science, public health implications, and research recommendations." Environmental health perspectives 119(8): 1053-1061.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), 547-560.
Serdeczny, O., Adams, S., Baarsch, F., Coumou, D., Robinson, A., Hare, W., Schaeffer, M., Perrette, M., & Reinhardt, J. (2017). Climate change impacts in Sub-Saharan Africa: from physical changes to their social repercussions. Regional Environmental Change, 17, 1585-1600.
Shah, I. A., Muhammad, Z., Khan, H., Ullah, R., & Rahman, A.-u. (2023). Spatiotemporal variation in the vegetation cover of Peshawar Basin in response to climate change. Environmental Monitoring and Assessment, 195(12), 1474.
Shang, R., et al. (2022). "Near-real-time monitoring of land disturbance with harmonized Landsats 7–8 and Sentinel-2 data." Remote sensing of environment 278: 113073.
Shao, X., Ding, X., Wang, J., Peng, S., & Wang, Z. (2024). Spatio-temporal changes and driving mechanisms of vegetation in Yunnan Province based on MODIS-KNDVI in recent 20 years.
Sokoni, C. H. (2008). Commercialisation of smallholder production in Tanzania: implications for sustainable resources management. The geographical journal, 174(2), 158-161.
Spracklen, D., Baker, J., Garcia-Carreras, L., & Marsham, J. (2018). The effects of tropical vegetation on rainfall. Annual Review of Environment and Resources, 43(1), 193-218.
Sumari, N. S., Ujoh, F., Samwel Swai, C., & Zheng, M. (2023). Urban growth dynamics and expansion forms in 11 Tanzanian cities from 1990 to 2020. International Journal of Digital Earth, 16(1), 1985-2001.
Svoboda, J., Štych, P., Laštovička, J., Paluba, D., & Kobliuk, N. (2022). Random forest classification of land use, land-use change and forestry (LULUCF) using sentinel-2 data—a case study of Czechia. Remote Sensing, 14(5), 1189.
Tawfik, M., & Ai-Lami, A. (2025). Relationship between vegetation cover and land surface temperature in Basra, Iraq. Journal of Agrometeorology, 27(1), 82-85.
Tumwebaze, I. K., Hrdličková, Z., Labor, A., Turay, A., Macarthy, J. M., Chmutina, K., Scott, R., Kayaga, S., Koroma, B., & Howard, G. (2022). Water and sanitation service levels in urban informal settlements: a case study of Portee-Rokupa in Freetown, Sierra Leone. Journal of Water, Sanitation and Hygiene for Development, 12(8), 612-621.
Verrelst, J., et al. (2015). "Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–A review." ISPRS Journal of Photogrammetry and Remote Sensing 108: 273-290.
Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., & Ng, W.-T. (2018). How much does multi-temporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation, 72, 122-130.
Wachiye, S., et al. (2022). "Effects of livestock and wildlife grazing intensity on soil carbon dioxide flux in the savanna grassland of Kenya." Agriculture, Ecosystems & Environment 325: 107713.
Wang, W.-Z., et al. (2021). Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy policy 151: 112171.
Wang, J., Bretz, M., Dewan, M. A. A., & Delavar, M. A. (2022). Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Science of the Total Environment, 822, 153559.
White, C. H., et al. (2021). Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks. Atmospheric Measurement Techniques 14(5): 3371-3394.
Willcock, S., Phillips, O. L., Platts, P. J., Balmford, A., Burgess, N. D., Lovett, J. C., Ahrends, A., Bayliss, J., Doggart, N., & Doody, K. (2012). Towards regional, error-bounded landscape carbon storage estimates for data-deficient areas of the world.
Wulder, M. A., et al. (2019). Current status of Landsat program, science, and applications. Remote sensing of environment 225: 127-147.
Yanda, P. Z., & Munishi, P. (2007). Hydrologic and land use/cover change analysis for the Ruvu River (Uluguru) and Sigi River (East Usambara) watersheds.
Yohannes, T., et al. (2022). Floristic composition and plant diversity analysis of Anbessa Forest in weseren Ethiopia and its conrtibution to biodivesrity conservation.
Zhang, K., et al. (2023). Increased heat risk in wet climate induced by urban humid heat. Nature 617(7962): 738-742.
Zhao, Q., et al. (2021). Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. The Lancet Planetary Health 5(7).