| 研究生: |
郭晉帆 Chin-Fan Kou |
|---|---|
| 論文名稱: |
太陽光電系統長期戶外實測與模型性能分析 Long-term Outdoor Measurement of Photovoltaic System and Performance Analysis by PVUSA Model |
| 指導教授: | 吳俊諆 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 太陽光電 、雙軸PV/CPV 、固定式PV 、長期戶外實測 、性能分析 、PVUSA模型 |
| 外文關鍵詞: | Photovoltaic, dual axis PV/CPV, fixed PV, long-term outdoor measurement, performance analysis, PVUSA model |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在中壢與屏東地區針對太陽光電(photovoltaic, PV)和聚光型太陽光電(concentrator PV, CPV)系統進行長期(一年)戶外實測與各項分析,內容有三項重點:性能實測與分析、環境參數的影響、PVUSA模型預測與實測比較。
採用軌跡公式追日法的雙軸PV系統與固定式PV系統進行性能比較,雙軸PV的發電增益為22.7%,顯示雙軸追日法可以有效提高產能;比較軌跡公式與光感測器追日法,晴天時兩者的發電量非常接近,陰天則是軌跡公式的表現較好;比較PV與CPV系統在中壢地區的性能,CPV的各項數據(最終產能、PR)皆低於PV,顯示在像中壢的日照不佳地區CPV表現仍不佳;同一套雙軸PV系統分別在中壢(平均日照量246.79 W/m2)與屏東地區(平均日照量為271.88 W/m2)進行實測,屏東的PV系統平均發電量較高,發電增益為25.8%,顯示日照條件直接影響性能表現。
日照量是影響PV系統性能的主要參數,與輸出功率呈線性正相關;晴朗指數除可判斷氣候情況,也可用於評估PV系統的性能表現,發電增益會隨晴朗指數上升而增加;模組溫度與輸出功率、轉換效率呈負相關,當溫度上升,受到熱損失的影響,性能表現會逐漸降低;風速與模組溫度之間為線性負相關,當風速大於8 m/s時,模組溫度呈現下降的趨勢。
PVUSA模型可以根據日照量、環境溫度和風速評估PV系統的輸出功率,本研究的實測值與PVUSA分析值非常接近,顯示PVUSA模型可以作為評估性能的方法。
This study analyzed the performance of photovoltaic (PV) and concentrator photovoltaic (CPV) systems with long-term (one year) outdoor measurement in Jhungli and Pingtung. The content was divided into three parts: performance measurement and analysis, impact of environmental parameters and PVUSA model prediction with measurement.
Field measurement of the dual-axis PV system using the sun-trajectory calculation and the fixed PV system was compared. The electricity generation of the tracking PV was 22.7% higher than that of the fixed one. Comparison of two sun-tracking methods (n sun-trajectory calculation and light sensor) of the two-axis PV system showed that the electricity output of both approaches were very close on sunny days. On cloudy days, the sun-trajectory calculation was higher. Comparison between PV and CPV system in Jhungli showed that CPV generated lower electricity. This indicates that the performance of CPV is still unsatisfactory in low insolation area such as Jhungli. Two dual-axis PV systems with the same sun-tracking approach were measured in Jhungli (average irradiance is 246.79 W/m2) and Pingtung (average irradiance is 271.88 W/m2) respectively. The power generation of the PV system in Pingtung was 25.8% higher. This showed that irradiance affects performance directly.
The irradiance was the most important parameter which correlated linearly with power output. Clearness index can evaluate the performance of PV. The electricity generation increased with higher clearness index. PV module temperature was in negative correlation with power output. Wind speed was in negative correlation with PV module temperature.
PVUSA model can estimate power output with a correlation of irradiance, ambient temperature and wind speed. The agreement between measurement and analysis was excellent. It showed that PVUSA model can assess performance of PV system accurately.
參考文獻
Araki, K. (2012) Proposal of an energy rating method fair to countries of lower irradiance resources, 8th International Conference on Concentrating Photovoltaic Systems AIP Conf. 1477, 344-347.
Aste, N., Del Pero, C. (2010) Technical and economic performance analysis of large-scale ground-mounted PV plants in Italian context, Prog. Photovolt: Res. 18:371-384.
Cañete, C., Carretero, J., Sidrach-de-Cardona, M. (2014) Energy performance of different photovoltaic module technologies under outdoor conditions, Energy 65, 295-302.
Carr, A.J., Pryor, T.L. (2004) A comparison of the performance of different PV module types in temperate climates, Solar Energy 76, 285–294.
Chumpolrat, K., Sangsuwan, V., Udomdachanut, N., Kittisontirak, S., Songtrai, S., Chinnavornrungsee, P., Limmanee, A., Sritharathikhun, J., Sriprapha, K. (2014) Effect of ambient temperature on performance of grid-connected inverter installed in Thailand, Intern. J. Photoenergy, Article ID 502628.
Corio, R., Reed, M., Fraas, L. (2010) Tracking the sun for more kilowatt hour and lower-cost solar electricity, Solar Cells and Their Applications, Second Ed.
Domínguez, C., Besson, P. (2014) On the sensitivity of 4 different CPV module technologies to relevant ambient and operation conditions, 10th International Conference on Concentrator Photovoltaic Systems AIP Conf. Proc. 1616, 308-312.
Eke, R., Senturk, A. (2012) Performance comparison of a double-axis sun tracking versus fixed PV system, Solar Energy 86, 2665-2672.
Fernandez, E.F., Perez-Higueras, P. (2012) Quantifying the effect of air temperature in CPV modules under outdoor conditions, 8th International Conference on Concentrator Photovoltaic Systems AIP Conf. Proc. 1477, 194-197.
García-Domingo, B., Aguilera, Tejero, J., Fuentes, M., Muñoz Díez, J.V., Nofuentes, Garrido, G. (2012) Analysis and characterization of an outdoor CPV system comparative with other PV technologies, 8th International Conference on Concentrating Photovoltaic Systems AIP Conf. 1477, 176-180.
Gombert, A., Wanka, S., Gerster, E., van Riesen, S., Neubauer, M., Lange, G., Hamidi, A., Burke, T. (2012) From a 32 m2 system with 90 CPV modules to a 105 m2 system with 12 CPV modules - Soitec's new CPV system CX-S530, 8th International Conference on Concentrating Photovoltaic Systems. 1477, 200-203.
Gueymard, C.A. (2009) Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications, Solar Energy 83, 432–444.
Huang, B.J., Ding, W.L., Huang, Y.C. (2011) Long-term field test of solar PV power generation using one-axis 3-position sun tracker, Solar Energy 85, 1935–1944.
Ishii, T., Takashima, T., Otani, K. (2011) Long-term performance degradation of various kinds of photovoltaic modules under moderate climatic conditions, Prog. Photovolt: Res. 19:170-179.
Kahoul, N., Houabes, M., Sadok, M. (2014) Assessing the early degradation of photovoltaic modules performance in the Saharan region, Energy Conversion and Management 82, 320-326.
Kaldellis, J.K., Kapsali, M., Kavadias, K.A. (2014) Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece, Renewable Energy 66, 612-624.
Kamei, A., Yoshida, S., Takakura, H., Minemoto, T. (2014) Ten years outdoor operation of silicon based photovoltaic modules at central latitude of Japan, Renewable Energy 65 78-82.
Kelly, N.A., Gibson, T.L. (2009) Improved photovoltaic energy output for cloudy conditions with a solar tracking system, Solar Energy 83 2092-2102.
Khonkar, H., Alowais, A., Sheikho, A., Alyahya, A., Alghamdi, A., Alsaedan, A., Eugenio, N.N., Alalweet, F., Halawani, M., Alsaferan, A. (2014) Two year performance of a 10 kW CPV system installed in two areas of Saudi Arabia, 10th International Conference on Concentrator Photovoltaic Systems AIP Conf. Proc. 1616, 16-20.
Kurnik, J., Jankovec, M., Brecl, K., Topic, M. (2011) Outdoor testing of PV module temperature and performance under different mounting and operational conditions, Solar Energy Materials & Solar Cells 95 373–376.
Lee, J.F., Rahim, N.A., Al-Turki, Y.A. (2013) Performance of dual-axis solar tracker versus static solar system by segmented clearness index in Malaysia, J. Photoenergy. Volume 2013, Article ID 820714, 13 pages.
Makrides, G., Zinsser, B., Schubert, M., Georghiou, G.E. (2014) Performance loss rate of twelve photovoltaic technologies under field conditions using statistical techniques, Solar Energy 103 28-42.
Marion, B., Adelstein, J., Boyle, K., Hayden, H., Hammond, B., Fletcher, T., Canada, B., Narang, D., Shugar, D., Wenger, H., Kimber, A., Mitchell, L., Rich, G., Townsend, T. (2005) Performance parameters for grid-connected PV systems, National Renewable Energy Laboratory.
Muller, M., Marion, B., Kurtz, S., Rodriguez, J. (2010) An investigation into spectral parameters as they impact CPV module performance, National Renewable Energy Laboratory.
Myers, D. (2009) Evaluation of the performance of the PVUSA rating methodology applied to dual junction PV technology, National Renewable Energy Laboratory.
Poudyal, K.N., Bhattarai, B.K., Sapkota, B., Kjeldstad, B. (2012) Estimation of global solar radiation using clearness index and cloud transmittance factor at Trans-Himalayan region in Nepal, Energy and Power Engineering, 4, 415-421.
Reich, N.H., Mueller, B., Armbruster, A., Wilfried, G. J., van Sark, H.M, Kiefer, K., Reise, C. (2012) Performance ratio revisited: is PR>90% realistic?, Prog. Photovolt: Res. 20:717-726.
Skoczek, A., Sample, T., Dunlop, E.D. (2009) The results of performance measurements of field-aged crystalline silicon photovoltaic modules, Prog. Photovolt: Res. 17:227-240.
Ya’acob, M.E., Hizam, H., Khatib, T., Amran, M., Radzi, M. (2014) A comparative study of three types of grid connected photovoltaic systems based on actual performance, Energy Conversion and Management 78, 8-13.
Yousif, C., Quecedo, G., Santos, J.B. (2013) Comparison of solar radiation in Marsaxlokk, Malta and Valladolid, Spain, Renewable Energy 49 203-206.
楊茹媛、賴炫霖、陳冠廷(2014),環境因素對太陽能模組效能的模型預測與分析,電子月刊第二十卷第四期。
郝宇杰(2014),中壢與屏東地區太陽光電系統戶外性能模擬與實測分析,國立中央大學能源工程研究所碩士論文。
柯任鴻(2013),實測與模擬太陽光電系統(含聚光型)性能:中壢及屏東二地的比較,國立中央大學能源工程研究所碩士論文。
曹昭陽、狄大衛,應用太陽電池,五南圖書出版股份有限公司(2009),P.52~P.66。
羅運俊、何梓年、王長貴,太陽能發電技術與應用,新文京開發出版(2007),P.13~P.19、P.29。
葉怡成,實驗計畫法 - 製程與產品最佳化,五南圖書出版股份有限公司(2001),P.2-1~P.2-49。
英國石油(BP),BP Statistical Review of World Energy 2014(2015/3檢索)http://www.bp.com/ en/global/corporate/about-bp/energy-economics/energy-outlook.html
Energy Trend綠能趨勢網(2015/3檢索) http://pv.energytrend.com.tw/features/ 20141205-10040.html
JEMA日本電機工業會(2015/3檢索) http://www.jema-net.or.jp/Japanese/res/solar/ about.html