| 研究生: |
湯智超 Chih-Chao Tang |
|---|---|
| 論文名稱: |
兩板間黏著叢集的強度 The strength of an adhesion cluster between two plates |
| 指導教授: |
陳宣毅
Hsuan-Yi Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 生物物理研究所 Graduate Institute of Biophysics |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 叢集 、黏著 、強度 |
| 外文關鍵詞: | cluster, adhesion |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們提出了一個理論模型來描述配體-受體叢集的生命期
T( f , Nt )與叢集大小Nt、外力F 的關係,這裡f = F/Nt 為每
一配體-受體對所受之力。此叢集是由Nt 個平行的配體受體
對所組成。由反應速率方程式我們找到一個叢集的特徵力
fc ,我們由不同外力下的蒙地卡羅模擬發現(1)當f >fc 時,
叢集生命期與叢集大小無關。這是由於在反應速率方程式
中,鍵結數目在叢集中所佔比例的衰變與叢集大小無關,而
與f 有關。(2)當f =fc 時,生命期與叢集大小有冪次關係
lnT~lnNt。為了解釋此結果我們引入等效自由能G,則一叢
集的斷裂過程可以用一假想粒子在位能G 下的運動來描
述。在f =fc 時,G 有個反曲點,且叢集生命期大多都花在反
曲點附近的區域上,由標度分析可得lnT~lnNt。(3)當f <fc 時
我們得到lnT~Nt,此時G 在Nb 空間中有一個井,所以叢集
生命期大約是此粒子跨越此井所需要的時間,利用Kramers
粒子脫離率定律可得lnT~ Nt。我們的研究證明了只要配體受
體對的斷裂率以及重新鍵結率是f 與叢集鍵結比例的函數,
則都可以得到以上的三種關係。
We present a theoretical model to study the lifetime T(Nt, f) of an adhesion
cluster under external force F, where Nt is the cluster size and f = F/Nt. The
cluster is composed of Nt parallel ligand-receptor pairs. We find a character-
istic force fc predicted by the rate equation. By Monte Carlo simulation, we
show (i) When f > fc, T is independent of Nt. This can be explained by the
rate equation which predicts that the fraction of connected ligand-receptor
pairs nb(t) depends on f, but not on Nt. (ii)When f = fc, lnT(Nt, f) ∼ lnNt.
To explain the result we construct the effective free energy G and treat the
force pulling process as a particle moving under G in Nb space. G(f = fc)
has a flat region where the particle spends most of its lifetime to cross it.
By estimating the width of the flat region with dimensional analysis, we find
lnT(Nt, f) ∼ lnNt. (iii) When f < fc regime, lnT(Nt, f) ∼ Nt because
G(f < fc) has a barrier with barrier height ∼ Nt and lifetime T comes from
the barrier crossing time of the particle, as a result lnT(Nt, f) ∼ Nt. Finally
we show that the above three relations exist as long as the rebinding and
unbinding rates are functions of f and nb.
[1] D. A. Lauffenburger and A. F. Horwitz, Cell 84, 359 (1996).
[2] J. Y. Shao and R. M. Hochmuth, Biophys. J. 71, 2892 (1996).
[3] G. U. Lee, D. A. Kidwell, and R. J. Colton, Langmuir, 10, 354-357
(1994).
[4] P. P. Lehenkari and M. A. Horton, Biochem. Biophys. Res. Commun.
259, 645-650 (1999).
[5] T. Nishizaka, H. Miyata, H. Yshikawa, S. Ishiwata, and K. Kinosita,
Nature(London) 377, 251 (1995).
[6] G. I. Bell, Science 200, 618 (1978).
[7] T. Erdmann and U. S. Schwarz, Phys. Rev. Lett., 92, 108102 (2004).
[8] E. Evans and K. Ritchie, Biophys. J. 76, 2439 (1999).
[9] U. Seifert, Phys. Rev. Lett. 84, 2750 (2000).
[10] H. A. Kramers, Physica (Amsterdam) 7, 284 (1940).
[11] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics. (Claren-
don, Oxford, 1986).
[12] A. Einstein, Ann. Physik 17,549 (1905) and 19, 371 (1906).
[13] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (El-
sevier, Amsterdam, 1992).
[14] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
[15] K. Prechtel, A. R. Bausch, V. Marchi-Artzner, M. Kantlehner, H.
Kessler, and R. Merkel, Phys. Rev. Lett., 89, 028101 (2002).
38