跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張育嘉
Yu-Chia Chang
論文名稱: 圖形化藍寶石基板應用於氮化鎵發光二極體之研究
A study of patterned sapphire substrates on GaN-based light-emitting diodes
指導教授: 張正陽
Jeng-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 圖形化藍寶石基板發光二極體
外文關鍵詞: PSS, patterned sapphire substrates, LED, light-emitting diodes
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前發光二極體在固態照明上的應用越來越廣,國內外有許多團隊利用圖樣化藍寶石基板來提升發光二極體的內部與外部量子效率。本論文最主要的目的為,使用化學濕式蝕刻法和乾式蝕刻法將微米結構圖樣製作於發光二極體的藍寶石基板(sapphire substrates),藉此來改善發光二極體的光萃取與出光效率。
    在化學濕式蝕刻法方面,利用高溫酸液,做出具有晶面圖樣的圓洞形藍寶石基板;在乾式蝕刻法方面,結合光阻熱融,雙重擋層,並利用導熱介質於藍寶石背部改善熱傳導,做出高度更大的半球形藍寶石基板。磊晶後得知圓洞狀圖樣藍寶石基板與氮化鎵之間會有空隙的產生,而半球形圖樣藍寶石基板則不會。
    在電性上,圖樣化藍寶石基板發光二極體與傳統發光二極體的電流電壓曲線非常相似,電性沒有被破壞。在電制激發光譜上可看出,圖樣化藍寶石基板可以減少Fabry-Perot現象。以圓洞圖樣藍寶石基板製作之發光二極體,光輸出功率提升39%。以半球形圖樣藍寶石基板製作之發光二極體,圖樣週期為4.5µm、5.0µm、6.0µm時,其光輸出功率分別提升45%、36%、29%,與光萃取理論模擬結果34.6%、33.3%、31.3%,因此我們可以發現實驗與模擬方面在趨勢上是相當符合的。


    At present light-emitting diodes (LED) in the application of solid-state lighting is interested. Many teams use patterned sapphire substrates (PSS) to improve the internal and external quantum efficiency. The main purpose of this thesis is using of chemical wet-etching and dry-etching method to fabricate micro-PSS to improve the light extraction efficiency of LED.
    For chemical wet-etching, a circular array composed to crystal face is fabricated by high temperature acid. For dry-etching, we made a deeper PSS structures by different hard masks such as photoresist reflow, double hard mask.
    Electrical property of PSS LED is as same as conventional LED. PSS LED can reduce Fabry-Perot phenomenon under the EL measurement so that light output power improvement is 39% by wet-etching PSS process. An improvement of 45%、36%、29% on the output power was achieved by adopting the 4.5µm、5.0µm、6.0µm period of hemispherical PSS LED. The trend of actual light output power is closed to simulation result of light extraction efficiency.

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 序論 1 1-1 發光二極體之發展 1 1-2 圖樣化藍寶石基板發光二極體簡介 2 1-3 圖樣化藍寶石基板之文獻回顧 4 1-4 研究動機與目的 6 第二章 圖樣化藍寶石之應用理論 10 2-1 藍寶石基板之材料特性 10 2-2 氮化鎵磊晶與差排原理 12 2-3 圖樣化藍寶石基板對量子效率之影響 16 第三章 圖樣化藍寶石基板實驗製作 20 3-1 圖樣化基板製程儀器簡介 20 3-2 濕式蝕刻法製作圖樣化藍寶石基板 24 3-3 乾式蝕刻法製作圖樣化藍寶石基板 27 3-4 濕式蝕刻與乾式蝕刻之優缺點比較 30 3-5 半球圖樣製程之改進與討論 31 第四章 發光二極體製作與量測結果討論 36 4-1 發光二極體晶片製程 36 4-2 量測系統介紹 38 4-3 圖樣化基板對於發光強度之量測結果與討論 40 4-4 圖樣密度對於發光強度之量測結果與討論 48 第五章 結論與未來展望 57 5-1 結論 57 5-2 未來展望 58 參考文獻 59

    [1] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Applied Physics Letters, Vol. 64, pp. 1687, 1994.
    [2] H.W. Huang, C.C. Kao, J.T. Chu, H.C. Kuo, S.C. Wang, and C.C. Yu, “Improvement of InGaN–GaN light-emitting diode performance with a nano-roughened p-GaN surface,” IEEE Photonics Technology Letters, Vol. 17, pp. 983, 2005.
    [3] C.C. Yang, R.H. Horng, C.E. Lee, W.Y. Lin, K.F. Pan, Y.Y. Su, and D.S. Wuu, “Improvement in extraction efficiency of GaN-based light-emitting diodes with textured surface layer by natural lithography,” Japanese Journal of Applied Physics, Vol. 44, pp. 2525, 2005.
    [4] J. Shakya, J.Y. Lin, and H.X. Jiang, “Time-resolved electro-luminescence studies of III-nitride ultraviolet photonic-crystal light-emitting diodes,” Applied Physics Letters, Vol. 85, pp. 2104, 2004.
    [5] C.C. Kao, H.C. Kuo, H.W. Huang, J.T. Chu, Y.C. Peng, Y.L. Hsieh, C.Y. Luo, S.C. Wang, C.C. Yu, and C.F. Lin, “Light output enhancement in a nitride-based light-emitting diode with 22 degree undercut sidewalls,” IEEE Photonics Technology Letters, Vol. 17, pp. 19, 2005.
    [6] 吳麗雲,「圖案化藍寶石基板之濕式蝕刻」,國立中央大學,碩士論文,民國九十五年。
    [7] 日商日亞化學股份有限公司,「具備凹凸成型基板之半導體發光元件發明」,專利案號-091116475,民國九十一年。
    [8] K. Tadatomo, H. Okagwa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metal-organic vapor phase epitaxy,” Japanese Journal of Applied Physics, Vol. 40, pp. L583, 2001.
    [9] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Japanese Journal of Applied Physics, Vol. 41, pp. L1431 ,2002.
    [10] A. Bell, R. Liu, F. A. Ponce, H. Amano, I. Akasaki, and D. Cherns, “Light emission, and microstructure of Mg-doped AlGaN grown on patterned sapphire,” Applied Physics Letters, Vol. 82, pp. 349, 2003.
    [11] S.J. Kim, “Vertical electrode GaN-based light-emitting diode fabricated by selective wet etching technique,” Japanese Journal of Applied Physics, Vol. 44, pp. 2921, 2005.
    [12] S.J. Kim, Y.S. Choi, Y.H. Han, and C.Y. Kim, “Vertical chip of GaN-based light-emitting diode formed on sapphire substrate,” Physica Status Solidi A, Vol. 202, pp. 2034, 2005.
    [13] S.J. Kim, “Improvement of GaN-based light-emitting diode by indium-tin-oxide transparent electrode, and vertical electrode,” IEEE Photonics Technology Letters, Vol. 17, pp. 8, 2005.
    [14] S.J. Kim, “Vertical chip of GaN-based blue light-emitting diode,” Solid-State Electronics, Vol. 49, pp. 1153, 2005.
    [15] S.J. Chang, Y.C. Lin , Y.K. Su, C.S. Chang, T.C. Wen, S.C. Shei, J.C. Ke, C.W. Kuo, S.C. Chen, and C.H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrates,” Physica Status Solidi A, Vol. 47, pp. 1539, 2003.
    [16] Y.P. Hsua, S J. Changa, Y.K. Su, J.K. Sheu, C.T. Lee, T.C. Wen, L.W. Wu, C.H. Kuo, C.S. Chang, and S.C. Shei, “Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs,” Journal of Crystal Growth, Vol. 261, pp. 466, 2004.
    [17] Z.H. Feng, Y.D. Qi, Z.D. Lu, and K.M. Lau, “GaN-based blue light-emitting diodes grown, and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy,” Journal of Crystal Growth, Vol. 272, pp. 327, 2004.
    [18] Y.J. Lee, T.C. Hsu, H.C. Kuo, S.C. Wang, Y.L. Yang, S.N. Yen, Y.T. Chu, Y.J. Shen, M.H. Hsieh, M.J. Jou, and B.J. Lee, “Improvement in light-output efficiency of near-ultraviolet InGaN-GaN LEDs fabricated on stripe patterned sapphire substrates,” Materials Science, and Engineering B-Solid State Materials for Advanced Technology, Vol. 122, pp. 184, 2005.
    [19] D.S. Wuu, W.K. Wang, W.C. Shih, R.H. Horng, C.E. Lee, W.Y. Lin, and J.S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photonics Technology Letters, Vol. 17, pp. 2, 2005.
    [20] W.K. Wang, D.S. Wuu, W.C. Shih, J.S. Fang, C.E. Lee, W.Y. Lin, P. Han, R.H. Horng, T.C. Hsu, T.C. Huo, M.J. Jou, A. Lin, and Y.H. Yu, “Near-ultraviolet InGaN/GaN light-emitting diodes grown on patterned sapphire substrates,” Vol. 44, pp. 2512, 2005.
    [21] W.K. Wang, D.S. Wuu, S.H. Lin, P. Han, R.H. Horng, T.C. Hsu, D.T.C. Huo, M.J. Jou, Y.H. Yu, A. Lin, “Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates,” IEEE Journal Of Quantum Electronics, Vol. 41, pp. 1103, 2005.
    [22] Y.J. Lee, J.M. Hwang, T.C. Hsu, M.H. Hsieh, M.J. Jou, B.J. Lee, T.C. Lu, H.C. Kuo, and S.C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technology Letters, Vol. 18, pp. 1152, 2006.
    [23] Y.J. Lee, H.C. Kuo, T.C. Lu, B.J. Su, and S.C. Wang, “Fabrication, and characterization of GaN-based LEDs grown on chemical wet-etched patterned sapphire substrates,” Journal of the Electro-chemical Society, Vol. 153, pp. G1106, 2006.
    [24] D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, S.Y. Huang, C.F. Lin, and R.H. Horng, “Defect reduction, and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Applied Physics Letters, Vol. 89, pp. 161105, 2006.
    [25] D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, R.H. Horng, Y.S. Yu, and M.H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” Journal of the Electrochemical Society, Vol. 153, pp. G765, 2006.
    [26] W.K. Wang, S.Y. Huang, S.H. Huang, K.S. Wen, D.S. Wuu, and R.H. Horng, “Fabrication, and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Applied Physics Letters, Vol. 88, pp. 181113, 2006.
    [27] W.K. Wang, D.S. Wuu, S.H. Lin, S.Y. Huang, P. Han, and R.H. Horng, “Characteristics of flip-chip InGaN-based light-emitting diodes on patterned sapphire substrates,” Japanese Journal of Applied Physics, Vol. 45, pp. 3430, 2006.
    [28] R.H. Horng, W.K. Wang, S.C. Huang, S.Y. Huang, S.H. Lin, C.F. Lin, and D.S. Wuu, “Growth, and characterization of 380-nm InGaN /AlGaN LEDs grown on patterned sapphire substrates,” Journal of Crystal Growth, Vol. 298, pp. 219, 2007.
    [29] P.C. Tsai, R.W. Chuang, and Y.K. Su, “Lifetime tests, and junction-temperature measurement of InGaN light-emitting diodes using patterned sapphire substrates,” Journal of Lightwave Technology, Vol. 25, pp. 591, 2007.
    [30] C.F. Shen, S.J. Chang, W.S. Chen, T.K. Ko, C.T. Kuo, and S.C. Shei, “Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate,” IEEE Photonics Technology Letters, Vol. 19, pp. 780, 2007.
    [31] C.E. Lee, Y.J. Lee, H.C. Kuo, M.R. Tsai, B.S. Cheng, T.C. Lu, S.C. Wang, and C.T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector, and textured micropillar arrays,” IEEE Photonics Technology Letters, Vol. 19, pp. 1200, 2007.
    [32] H.S. Cheong, M.G. Na, Y.J. Choi YJ, T.V. Cuong, C.H. Hong, E.K. Suh, B.H. Kong, and H.K. Cho, “Structural, and optical properties of near-UV LEDs grown on V-grooved sapphire substrates fabricated by wet etching,” Journal of Crystal Growth, Vol. 298, pp. 699, 2007.
    [33] T.V. Cuong, H.S. Cheong, H.G. Kim, H.Y. Kim, C.H. Hong, E.K. Suh, H.K. Cho HK, and B.H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Applied Physics Letters, Vol. 90, pp. 131107, 2007.
    [34] T.S. Kim, S.M. Kim, Y.H. Jang, and G.Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography,” Applied Physics Letters, Vol. 91, pp. 171114, 2007.
    [35] J.H. Lee, J.T. Oh, I.S. Choi, Y.C. Kim, S.M. Lee SM, and H.J. Kim, “Growth and characteristics of InGaN/GaN films grown on hemi-spherical patterned sapphire by using MOCVD,” The Journal of the Korean Physical Society, Vol. 51, pp. S249, 2007.
    [36] W.K. Wang, D.S. Wuu, S.H. Lin, S.Y. Huang, K.S. Wen, and R.H. Horng, “Growth and characterization of InGaN-based light-emitting diodes on patterned sapphire substrates,” The Journal of Physics, and Chemistry of Solids, Vol. 69, pp. 714, 2008.
    [37] H.Y. Gao, F.W. Yan, Y. Zhang, J.M. Li, Y.P. Zeng, and G.H. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Journal of Applied Physics, Vol. 103, pp. 014314, 2008.
    [38] H.Y. Gao, F.W. Yan, Y. Zhang, J.M. Li, Y.P. Zeng, and G.H. Wang, “Fabrication of nano-patterned sapphire substrates, and their application to the improvement of the performance of GaN-based LEDs,” Journal of Physics, Vol. 41, pp. 115106, 2008.
    [39] C.C. Sun, C.Y. Lin, and T.X. Lee, ‘‘Enhancement of light extraction of GaN-based light-emitting diodes with a microstructure array’’, Optical Engineering, Vol. 43, pp. 1700, 2004.
    [40] B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolnek, B.P. Keller, S.P. Denbaars, and J.S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Applied Physics Letters, Vol. 68, pp. 643, 1996.
    [41] P. Bhattacharya, Semiconductor Optoelectric Devices, Prentice Hall, 1994.
    [42] S.M. Sze, Physics of Semiconductor Devices, 2nd Ed., Wiley, New York, 1981.
    [43] D. Hull, Introduction to Dislocations,” 2nd Ed., Pergamon Press, Oxford, 1975.
    [44] X.H. Wu, C.R. Elsass, A. Abare, M. Mack, S. Keller, P.M. Petroff, S.P. DenBaars, J.S. Speck, and S.J. Rosner, “Structural origin of V-defects, and correlation with localized excitonic centers in InGaN/ GaN multiple quantum wells,” Applied Physics Letters, Vol. 72, pp. 692, 1998.
    [45] S. Keller, G. Parish, J.S. Speck, S.P. DenBaars, and U.K. Mishra, “Dislocation reduction in GaN films through selective island growth of InGaN,” Applied Physics Letters, Vol. 77, pp. 2665, 2000.
    [46] J.W. Matthews, Epitaxial Growth, Academic, New York, 1975.
    [47] M. Kneissl, T.L. Paoli, P. Kiesel, D.W. Treat, M. Teepe, N. Miyashita, and N.M. Johnson, “Two-section InGaN multiple-quantum-well laser diode with integrated electroabsorption modulator,” Applied Physics Letters, Vol. 80, pp. 3283, 2002.

    QR CODE
    :::