| 研究生: |
楊景皓 Ching-Hao Yang |
|---|---|
| 論文名稱: |
應用於無線感測網路之多模式低複雜度收發機設計 Design of a Multi-mode Low-complexity Transceiver for Wireless Sensor Networks |
| 指導教授: |
蔡佩芸
Pei-Yun Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 空間調變 、收發機 、OQPSK 、ML Detection |
| 外文關鍵詞: | Spatial Modulation, Transceiver, OQPSK, 最大相似偵測 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年無線感測網路的應用日趨增加,包含軍事、醫療照護和保安監控等,在感測器的設計上,除了要著眼於降低功率消耗以解決電池能量有限和充電不易的問題,支援多種資料傳輸率以滿足不同傳輸要求的特性也是必需的。
本論文提出一個多模式無線通訊收發系統,擷取IEEE802.15.4的規格參數特性和空間調變(Spatial Modulation)的技術,使用2.4GHz的頻帶和OQPSK調變,建立新的收發系統規格包含了五種傳輸模式,支援不同的資料傳輸率,範圍從250Kbps到3Mbps,以滿足不同的傳輸需求。我們為單天線和多天線傳輸模式建立基頻通道模型,加入了多路徑衰減通道效應、載波頻率偏移(CFO)和雜訊。在接收端部分主要分成三個部分,粗略同步、精確同步和資料還原。粗略同步包含利用前置序列的重覆性去做符元邊界偵測和CFO的粗略估測。精確同步包含針對CFO估測誤差的修正與相位補償、通道估測和殘餘相位誤差追蹤。在資料還原部分,是要將補償後的訊號還原回資料位元,針對單天線傳輸模式使用解展頻架構,針對多天線傳輸模式則使用多輸入多輸出偵測,我們使用最大相似(Maximum Likelihood, ML)偵測以用於OQPSK調變訊號與空間調變傳輸。最後我們針對五個收發模式做位元錯誤率的系統效能模擬,並將演算法進行硬體電路架構設計,完成系統的定點數模擬。
This thesis presents an OQPSK transceiver with five modes including Spatial Modulation mode for wireless sensor network applications. The communication system uses 2.4GHz carrier frequency with various data rates ranging from 250Kbps to 3Mbps. The transceiver supports SISO transmission in four modes and 2×2 MIMO transmission with spatial modulation. At the receiver, we design symbol timing detection, carrier frequency offset estimation and compensation, residual phase error tracking, channel estimation, data recovery. For data recovery block, correlator is used for despreading in SISO transmission mode and joint-ML Detection is used for spatial modulation detection in 2×2 MIMO transmission mode. We simulate the bit error rate of five transmission modes under multipath fading channel effects, CFO and noise. It shows that our receiver can work in the low-SNR regime with low-rate modes and also supports 3Mbps with spatial modulation. The algorithms are then transferred into hardware architecture. The fixed-point simulation is carried out to obtain the proper word-lengths of all data paths.
[1] ”Part 15.4: Low-Rate Wireless Personal Area Networks(LR-WPANs),”IEEE Std 802.15.4TM – 2011
[2] JP Norair, “Introduction to DASH7 Technologies”, Mar 2009
[3] R. Tabish, F. Touati, “A Comparative Analysis of BLE and 6LoWPAN For U-HealthCare Applications”,2013 GCC Conference and Exhibition, pp.286-291, Nov 2013
[4] http://www.greenpeak.com/
[5] SIG, "Specification of the Bluetooth System. Core, Version 4.2"," http://www.bluetooth.com", 2014.
[6] Pei-Yun Tsai, Tzi-Dar Chiueh, I-Wei Lai, “Baseband Receiver Design for Wireless MIMO-OFDM Communications”, Wiley-IEEE Press, 2012
[7] Keiji Tachikawa, “W-CDMA Mobile Communication System”, Wiley, 2002
[8] R. Mesleh, H. Haas, Y. Lee, and S. Yun, “Interchannel interference avoidance in MIMO transmission by exploiting spatial information”, in Proc. 16th IEEE Int. Symp. PIMRC, Berlin, Germany, 2005, vol.1, pp.141-145
[9] M. Di Renzo, H. Hass, A. Ghrayeb, et al., “Spatial Modulation for Generalized MIMO: challenges, opportunities, and implementation”, Proc. IEEE, vol.102, no. 1, pp.56-103, Jan 2014
[10] Kyung Sup Kwak, Jaedoo Huh, M. Al Ameen, “Document for DSSS OVSF Specification”, IEEE P802.15 Working Group for Wireless Personal Area Networks,2012
[11] A. F. Molisch, and et al. “IEEE 802.15.4a channel model - final report.”, IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a(TG4a), Tech. Rep., Nov. 2004
[12] K. H. Chen and H. P. Ma, “A Low Power ZigBee Baseband Processor,” in Proc. of International SOC Conference, Nov. 2008 pp. 40-43.
[13] Ze-Mu Chang, “Design and Evaluation of Gigabit Indoor Wireless Communication Systems”, M.S. thesis, National Central University, Taoyuan, Taiwan, 2010
[14] Kuan-yuen Liao, “The Baseband Signal Processing and Circuit Design for 915 MHz Amplitude Shift Keying Modulation Mode of the IEEE 802.15.4 – 2006 Low Rate-Wireless Personal Area Network”, M.S. thesis, National Sun Yet-San University, Kaoshung, Taiwan, 2009
[15] N. Serafimovski, and et al., “Practical Implementation of Spatial Modulation,” IEEE Transactions on Vehilcular Technology, pp. 4511~4523, Nov. 2013.
[16] R. Mesleh, H. Hass, S. Sinanovic, C.W. Ahn, S. Yun, “Spatial Modulation”, IEEE Trans. Veh. Tech., vol. 57, pp. 2228-2241, 2008