| 研究生: |
林憲邦 Sian-Bang Lin |
|---|---|
| 論文名稱: |
伽利略系統 E1 頻段軟體定義無線電接收機開發與實作 |
| 指導教授: |
蔡龍治
Lung-Chih Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 伽利略系統 、全球定位系統 、軟體定義無線電 |
| 外文關鍵詞: | GALILEO, GPS, Software Defined Reciever |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上,無線電收發機是透過設計電子電路來完成的,但隨著通訊協定世代更迭的速度變快,電子電路設計的速度已逐漸跟不上,再加上晶片運算效能的提升,透過軟體方法實現通訊系統設計已成為可能,進而發展出軟體定義無線電(Software Defined Radio, SDR)的概念。
本篇論文之伽利略系統E1頻段軟體定義無線電接收機演算法是基於先前全球定位系統(Global Positioning System, GPS) L1頻段軟體定義無線電接收機演算法進行開發,因此除了針對軟體定義無線電接收機及伽利略系統(GALILEO)之訊號組成進行介紹外,也會針對全球定位系統及衛星基增強系統(Satellite-Based Augmentation System, SBAS)的訊號組成進行介紹。本軟體定義無線電接收機主要透過模稜函數(Ambiguity Function)與同調積分(Coherent Integration)兩項技術對伽利略系統訊號進行捕獲與追蹤。最後將計算結果與NASA JPL NCUT標準測站之RINEX測量值進行比對驗證。經驗證後確定本軟體定義無線電接收機能成功接收到伽利略系統E1頻段之訊號,但仍需透過增加相位測量等手段來增加訊號之穩定性。
Traditionally, radio receivers are completed by designing electronic circuits. However, with the increase of signal design complexity, the speed of electronic circuit design has gradually been unable to keep up. But, by the improvement of chip computing performance, and the development of wideband antenna, the concept of software-defined radio (SDR) has been developed. Advantages of SDR is its flexibility, only the part of the digital signal processing that needs to be changed to match the target signal to receive the target signal.
The GALILEO E1-band SDR algorithm in this thesis is developed based on the previous Global Positioning System L1-band SDR algorithm. This SDR algorithm to acquire and track GALILEO signals mainly through two technologies, Ambiguity Function and Coherent Integration. Use ambiguity function to find out the chip delay and Doppler shift of signal, and use coherent integration to improve the signal-to-noise ratio.
The results calculated by the SDR are compared and verified with the RINEX measurement values of the NASA JPL NCUT standard station. After verification, it is determined that the SDR can successfully receive the signal of the GALILEO E1-band, but it is still necessary to increase the stability of the signal by adding phase measurement to the algorithm.
1. Tsai, L.-C., et al., Coastal sea-surface wave measurements using software-based GPS reflectometers in Lanyu, Taiwan. GPS Solutions, 2021. 25(4).
2. A History Of Astronomy at Illinois. [cited 2022 Aug, 2]; Available from: https://astro.illinois.edu/newsroom/history-astronomy-illinois.
3. Guier, W.H. and G.C. Weiffenbach, Theoretical Analysis of Doppler Radio Signals from Earth Satellites, in Nature. 1958, Springer Science and Business Media LLC. p. 1525-1526.
4. Guier, W. and G. Weiffenbach, A Satellite Doppler Navigation System. Proceedings of the IRE, 1960. 48(4): p. 507-516.
5. 20th Anniversary of Initial Operational Capability of the GPS Constellation. 2014 [cited 2022 8/17]; Available from: https://www.afspc.af.mil/News/Article-Display/Article/731396/20th-anniversary-of-initial-operational-capability-of-the-gps-constellation/.
6. GPS Modernization. 2017 [cited 2022 8/17]; Available from: https://www.gps.gov/systems/gps/modernization/.
7. About GLONASS. [cited 2022 8/17]; Available from: https://www.glonass-iac.ru/en/about_glonass/.
8. Cyclone Global Navigation Satellite System Mission Objectives. [cited 2022 8/17]; Available from: https://podaac.jpl.nasa.gov/CYGNSS?tab=mission-objectives.
9. Buracchini, E., The software radio concept. IEEE Communications Magazine, 2000. 38(9): p. 138-143.
10. Flores, A., Navstar GPS Space Segment/Navigation User Interfaces. 2021: Global Positioning Systems Directorate.
11. L1 C/A PRN CODE ASSIGNMENTS. Global Positioning Systems Directorate.
12. EUROPEAN GNSS (GALILEO) OPEN SERVICE SIGNAL-IN-SPACE INERFACE CONTROL DOCUMENT Issue 2.0. 2021: European GNSS Service Centre.
13. Simona Lohan, E. Analytical performance of CBOC-modulated Galileo E1 signal using sine BOC(1,1) receiver for mass-market applications. IEEE.
14. VEXXIS® GNSS-500 Series Antennas. [cited 2022 8/17]; Available from: https://novatel.com/products/gps-gnss-antennas/vexxis-series-antennas/vexxis-gnss-500-series-antennas.
15. USRP B200. [cited 2022 8/17]; Available from: https://www.ettus.com/all-products/ub200-kit/.
16. Fernández-Prades, C., et al., GNSS-SDR: An open source tool for researchers and developers. Vol. 2. 2011.
17. Tsui, J.B.-Y., Fundamentals of Global Positioning System Receivers: A Software Approach, Second Edition. 2005.
18. Kai Borre, D.M.A., Nicolaj Bertelsen, Peter Rinder, Søren Holdt Jensen, A Software-Defined GPS and Galileo Receiver A Single-Frequency Approach. 1 ed. Applied and Numerical Harmonic Analysis. 2007: Birkhäuser Boston, MA.
19. Fernandez-Prades, C., et al. An open source Galileo E1 software receiver. IEEE.
20. Vallado, D., Methods of Astrodynamics, a Computer Approach. 1991: p. 359.
21. Vallado, D.A., Fundamentals of astrodynamics and applications. Vol. 12. 2001: Springer Science & Business Media.
22. Stein, S., Algorithms for ambiguity function processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981. 29(3): p. 588-599.
23. Kelso, T.S. NORAD Two-Line Element Set Format. [cited 2022 8/17]; Available from: https://celestrak.org/NORAD/documentation/tle-fmt.php.
24. Kelso, T.S. Frequently Asked Questions: Two-Line Element Set Format. [cited 2022 8/17]; Available from: https://celestrak.org/columns/v04n03/.
25. DEPARTMENT OF DEFENSE WORLD GEODETIC SYSTEM 1984. 2014, NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY.
26. Kaplan, G.H., The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models: Explanation and Implementation, ed. U.S.N. Observatory. 2005, Washington, D.C.
27. Station ID : NCUT. [cited 2022 8/17]; Available from: http://geodesy.unr.edu/NGLStationPages/stations/NCUT.sta.
28. Werner Gurtner, L.E., RINEX: The Receiver Independent Exchange Format Version 2.11. 2007: IGS/RTCM RINEX Working Group.