| 研究生: |
陳志豪 Chih-Hao Chen |
|---|---|
| 論文名稱: |
TCDP鑽井岩心之熱參數直接量測與相關物理特性研究 Direct Measurements Thermal properties andsome related Physical properties from TCDP core |
| 指導教授: |
田中秀實
陳維民 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 岩石密度 、孔隙率 、熱傳導係數 、熱擴散速率 、比熱 |
| 外文關鍵詞: | TCDP, Thermal Conductivity, Thermal Diffusivity |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1999年集集地震至今,吸引中外學界熱烈投入各項研究,然而針對斷層帶岩石密度及孔隙率變化之探討卻異常的貧乏。本研究藉由TCDP台中大坑鑽井C井(深度1050-1280米包含四大斷層帶中圍岩與破裂帶取出之岩心),透過密集取樣並使用精密儀器,並參考A井實驗之經驗,更改取樣方法(加大切割取樣)及各項參數均取自同部位,以減少誤差。
???賑膍s顯現,岩石密度隨著斷層變化有明顯之變化,即為密度由圍岩漸往斷層中心變小,孔隙率則隨之變大,熱傳導係數隨之變小,而熱擴散速率則隨之變大,熱傳導係數平均在2.5 W/m/K,隨著密度增大而增大,且砂岩的變化會比頁岩大。熱擴散速率平均在1.5 m m2/s則隨著密度增大而減小,但砂岩(1.72)比頁岩(1.13)大。推算出之比熱平均約700 J/kg/K,砂岩(625)為最小,砂頁岩(670)次之,最大為頁岩(820)。
密度與孔隙率試驗有高度的線性關係(R2=0.9),並且樣本達到104個,證明本研究方法可行,砂岩之無孔隙密度為2.8 g/cm3,砂頁岩為2.84 g/cm3,頁岩為2.9 g/cm3,整體母岩之濕密度在2.6 g/cm3左右。孔隙率部分母岩都在10 %以下,頁岩(9.5 %)則比砂岩(7.5 %)大,砂頁岩互層(8.3 %)特性在砂岩與頁岩之間。
本實驗發現深度1178.7米處,擁有達到40% 的高孔隙率,且可以直接用手指輕易搓入,岩心未切割前,外觀上也顯現出鬆散,所以合理的懷疑此為921地震所引起之斷層帶。
After 1999 Chi-Chi earthquake, have many researcher study a lot of topics, but direct measurement the rock of changing of density and porosity of fault-zone rock are very rate. This research is with Taiwan Chelungpu-fault Drilling Project(TCDP) drilling C well of Takung (1050-1280 meters of depth include the drill core that is taken out of area with break of country rock in four major fault-zone ), use the precision type instrument through taking a sample intensively, and consult the experience of A well experiment , and every parameter is taken from with the position altering the sampling method ( bigger and cuts and takes a sample ), in order to reduce the error.
Relieves and appear, the density of rock has obvious changes as the fault change, it is the density that is diminished to the fault centre gradually by the country rock, the porosity becomes great , heat-conductivity is diminished , but the speed of thermal diffusivity becomes large . Thermal-conductivity is average in 2.5W/m/K, increase as the density increases, and the change of the sandstone will be bigger than the shale. The thermal diffusivity is reduced averagely as the density increases, but the sandstone (1.72) is bigger than the shale (1.13).
The heat capacity calculated invites 700 J/kg/K more equally, the sandstone (625) is minimum, and the sandstone and shale (670) take second place, most greatly the shale (820).
The test of density and porosity to have height linear relations (R2 =0.9), And the sample reaches 104, prove this research approach is feasible, it is 2.8g/cm3 that sandstone has density of non-porosity, the sand and shale are 2.84g/cm3, the shale is 2.9g/cm3, the wet density of the whole host rock is in about 2.6 g/cm3. The whole porosity some host rock is under 10, the shale (9.5%) is bigger than the sandstone (7.5%), the characteristic of layer (8.3%) each other of sandstone and shale is between sandstone and shale.
This experiment finds place of 1178.7 meters of depth, there is high porosity up to 40% , and can rub with the hands into easily with the finger directly , the drill core displays too loosely on the appearance before cutting, so rational this fault-zone caused by 921 earthquakes of suspicion.
中文部分:
王乾盈 (2004) ,台灣車籠埔斷層深鑽計畫書(TCDP Project),中央大學地球物理研究所。?
何春蓀(1986),台灣地質概論,台灣地質圖幅說明書(第二版),經濟部? 中央地質調查所出版,共163頁。
何信昌、陳勉銘(2000),五萬分之一臺灣地質圖說明書圖幅第24號—臺中,經濟部中央地質調查所,共65頁。
馬國鳳 (2004),台灣車籠埔斷層深鑽計畫書(TCDP Project),中央大學地球物理研究所。.
陳璿臣(2002),九二一地震車籠埔斷層震測研究,中央大學地球物理研究所碩士論文,共156頁。
盧崇賓(2004),地震斷層作用後的流體滲透作用:檢視車籠埔斷層南投井斷層岩之化學及礦物組成,中央大學應用地質研究所碩士論文,共100頁。
英文部分
Brigaud, F. and G. Vasseur, 1989. Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophysical Journal, 98, 525-542.
Douglas, W. W., W. S. Jacob, 2004. A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids.Part 1: Minerals and Nonporous Rocks Natural Resources Research, Vol. 13, No. 2, 97-122.
Flynn G. J., L. B. Moore and W. Klock, 1999. Density and Porosity of Stone Meteorites: Implications for the Density,Porosity, Cratering, and Collisional Disruption of Asteroids Icarus 142, 97–105.
Gustafsson, S. E., A. J. Hamdani, K. Ahmad, A. Maqsood, 1982, Transient Hot-Strip Method for Measuring Thermal Conductivity and Specific Heat of Solids and Fluids: Second-Order Theory Approximation for Short Time. J. Appl. Phys., 53, 6064-6068
Higgins, M. W., 1971. Cataclastic rocks. U.S. Geological Survey professional paper 687, 1-97.
Huang, S. T., J. C. Wu, J. H. Hung, and H. Tanaka, 2002. Studies of sedimentary facies, stratigraphy and deformation structures of the Chelungpu Fault zone on cores from drilled wells in Fengyuan and Nantou, central Taiwan. TAO, Vol. 13, No. 3, 253-278.
LaFehr, T. R., 1983. Rock density from borehole gravity surveys, geophysics. vol. 4x. no.3. 341-356.
Maqsood, A. , K. Kamran and I. Hussain, 2004. Prediction of thermal conductivity of granite rocks from porosity and density data at normal temperature and pressure: in situ thermal conductivity measurements. J. Phys. D: Appl. Phys. 37, 3396-3041.
Maqsood, M., M. Arshad, M. Zafarullah and A. Maqsood, 1996. Low-temperature thermal conductivity measurement apparatus:design assembly,calibration and measurement on (Y123, Bi2223) superconductors. Supercond. Sci. Technol. 9, 321-326. Printed in the UK.
McKenzie, D. and J. N. Brune , 1972. Melting on fault Planes During Large Earthquakes. Geophys. J. R. astr. Soc. 29, 65-78.
Menendez, B., C. David and M. Darot, 1999. A Study of Crack Network in Thermally and Mechanically Cracked Granite Samples using Confocal Scanning Laser Microscopy. Phys. Chem. Earth (A), Vol. 24, No.7, 627-632.
MiningLife Media, 2005. Rock Properties. Miner''s Toolbox General Engineering. Http://www.mininglife.com/Miner/general/Density.html
Morrow, C. A. and D. A. Lockner, 2001. Hayward Fault Rocks: Porosity, Density, and Strength Measurements, .S. Geological Survey Open-File Report 01-421.
Sass J. H., 1992. Heat Flow From a Scientific Research Well at Cajon Pass, California. Journal of Geophysical research, Vol. 97, No. B4. 5017-5030.
Schulz, S. E., J. P. Evans, 1998. Spatial variability in microscopic deformation and composition of the Punchbowl fault, Southern California: implications for mechanisms, fluid-rock interaction, and fault morphology. Tectonophysics, Vol. 295, 223-244.
Shabbir, G., M. Maqsood, A. Maqsood, I. Haq, A. Amin, S. E. Gustafsson,1993. Thermophysical Properties of Rock Marbles as a Function of Temperature. J. Phys. D: Appl. Phys. 26, 1576-1580
Sibson, R.H., 1977. Fault rocks and fault mechanisms: Journal of the Geological Society of London, Vol. 133, 191-213.
Tanaka, H., 1992. Cataclastic lineations. Journal of Structural Geology, Vol. 14, No. 10, 1239-1252.
Tanaka, H., K. Fujimoto, T. Ohtani, and H. Ito, 2001. Structural and chemical characterization of shear zones in the freshly activated Nohima fault, Awaji Island, southwest Japan. Journal of Geophysical Research, Vol. 106, No. B5, 8789-8810.
Tanaka, H., C.Y. Wang, W.M. Chen, K. Ujiie, H. Ito, and M. Ando, 2002. Initial science report of shallow drilling penetrating into Chelungpu fault zone, Taiwan. TAO, Vol. 13, No. 2, 227-251.
Tanaka, H.,W. M. Chen, Jim Mori, C.Y. Wang, K. Kawabata, N. Urata, C. B. Lu, H. J. Huang, T. J. Kuo, C. H. Chen, W. C. Lu, 2006. Direct measurement of thermal transport properties across the active fault zone and its implication to frictional heating during faulting, 2006 Annual Meeting of Geological Society Located in Miaoli, Abstract, 99.
Wang, Y. C., H. Tanaka, , G. D. Chou, , C. C. Chen, and J. H. Hung, 2002. Shallow reflection seismics aiding geological drilling into the Chelungpu Fault after the 1999 Chi-chi earthquake, Taiwan. TAO, Vol. 13, No. 2, 153-170.