跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林韋成
Wei-Cheng Lin
論文名稱: Estimation in copula-based Markov mixture normal model
Estimation in copula-based Markov mixture normal model
指導教授: 孫立憲
Li-Hsien Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 57
中文關鍵詞: copula混和常態模型牛頓-拉弗森k-平均演算法馬可夫模型對數報酬
外文關鍵詞: copula, mixture normal distribution, Newton-Raphson, k-means clustering, Markov model, log return
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們提出對於copula之下馬可夫鍊模型的估計問題,由於在股票市場中其厚尾的特性,我們選用混和常態模型作為我們的邊際分布,基於邊際分布為混和常態分佈和Clayton copula,我們得到相應的概似函數,為了解決最大概似估計量的問題,我們應用了牛頓-拉弗森方法,在實證分析中,我們分析了道瓊斯工業平均指數的股票價格。


    In this paper, we propose the estimation problem for a copula-based Markov model. Owing to the fat tail feature in stock market, we select mixture normal distribution as the marginal distribution for the log return. Based on the mixture normal distribution as the marginal distribution and the Clayton copula, we obtain the corresponding likelihood function. In order to solve the maximum likelihood estimators, we apply Newton Raphson method. In the empirical analysis, the stock price of Dow Jones Industrial Average is analyzed for illustration.

    Introduction 1 2 Copula-based Markov Model 3 2.1 Mixture Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Copula function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Model assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 The likelihood function of Clayton copula . . . . . . . . . . . . . . . 7 3 Method for Estimate parameters 8 3.1 Randomized Newton-Raphson Method . . . . . . . . . . . . . . . . . 8 3.2 K-means clustering algorithm . . . . . . . . . . . . . . . . . . . . . . 9 4 Simulation 13 4.1 Simulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 Empirical Study 26 5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2 Empirical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 Conclusion 32

    [1] Carter, C. K., Kohn, R. (1994) Markov chain Monte Carlo in conditionally
    Gaussian state space models. Biometrika, 83, 589-601.
    [2] Darsow, W. F., Nguten, B., Olsen, E. T. (1992) Copulas and Markov Processes.
    IllinoisJournalofMathematics; 36; 600 􀀀 642.
    [3] Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977). Maximum Likelihood from
    Incomplete Data via the EM Algorithm. Journal of the Royal Statistical
    Society.Series B (Methodological) 39(1): 1{38.
    [4] Domma, F., Giordano, S., Francesco, P. P. (2009). Statistical modeling of temporal
    dependence in nancial data via a copula function. Communications in
    Statistics-Simulation and Computation 38:703{728.
    [5] Emura, T. Long, T. H., Sun, L. H. (2017) R routines performing estimation and statistical
    process control under copula-based time series models. Communications
    in Statistics Simulation and Computation, 46(4), 3067-3087.
    [6] Frees, E. W., Valadez, E. (1998) Understanding the relationships using copulas.
    North American Actuarial Journal, 2, 1-25.
    [7] Gelman, A., Rubin, D. (1992) Inference from Iterative simulation using Multiple
    sequences. Statistical Science, 7, 457-473.
    [8] Kim JM, Hwang SY (2017). Directional dependence via Gaussian copula beta
    regression model with asymmetric GARCH marginals. Communications in
    Statistics-Simulation and Computation, 46(10), 7639-7653.
    [9] Kim JM, Baik J (2018a), Anomaly detection in sensor data, The Korean Reliability
    Society, Journal of Applied Reliability 18(1): 20-32.
    [10] Kim JM, Baik J (2018b), Change point detection by copula conditional distributions,
    manuscript.
    47
    [11] Joe,H.(1997) Multivariate Models and dependence. Chapman & hall.
    [12] Long, T. H., Emura, T. (2014) A control chart using copula-based Markov chain
    models. Journal of the Chinese Statistical Association , 52(4), 466-496.
    [13] Ly, A., Marsman, M., Verhagen, A., Grasman, R., &Wagenmakers, E.-J. (2015).
    A tutorial on Fisher information. Journal of Mathematical Psychology, (submitted
    for publication).
    [14] M. Kok, J. Dahlin, T. B. Schon, A. Wills, Newton-based maximum likelihood
    estimation in nonlinear state space models, Proc. 17th IFAC Symp. Syst.
    Identificat., pp. 969-974, Oct. 2015.
    [15] Nelsen, R. B. (2006) An Introduction to Copulas, 2nd Edition. Springer Series
    in Statistics, Springer-V erlag : NewY ork.
    [16] P. Zangari, An improved methodology for measuring VaR, Risk Metrics Monitor,
    2nd quarter, Reuters/J.P. Morgan, 7{25 (1996).
    [17] R development Core Team (2014) R: a language and environment for statistical
    computing. Foundation for Statistical Computing, R version 3:2:1.
    [18] Ross, S. M. (2006) Simulation,4th Edition. Elevier.

    QR CODE
    :::