跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林彥廷
Yan-Ting Lin
論文名稱: 串接耦合量子點之熱整流特性
thermal rectification properties of serially coupled quantum dots
指導教授: 郭明庭
Ming-Ting Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 量子點熱整流特性熱電特性奈米結構塞貝克效應
外文關鍵詞: quantum dot, thermal rectification, thermoelectric, nanostructure, Seebeck effect
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們藉由Hubbard模型和Anderson模型探討嵌入串接耦合量子點的奈米線之熱整流特性。並藉由凯帝旭格林函數的技術推導在庫倫阻斷區間流經量子點奈米線的穿隧電流與熱流之公式。我們在電極與量子點間設計一層真空層降低聲子的效應,藉此探討由電子形成的熱整流特性。相較於在平行量子點接面的熱整流特性,我們發現串接耦合量子點的接面系統,熱整流機制是有所不同。我們也依序探討了量子點尺寸大小以及量子點位置對串接耦合量子點的熱整流特性的影響。我們證明了要在串接耦合量子點系統中觀察到熱整流的發生,尺寸擾動產生的量子點能階差異以及Seebeck effect產生的熱電壓所造成的能階偏移是必須的。


    In this thesis, we have theoretically investigated the thermal rectification properties of serially coupled quantum dots (SCQDs) embedded in a nanowire connected to metallic electrodes by the Hubbard model and the Anderson model. The charge and heat currents in the Coulomb blockade regime are calculated by the Keldysh-Green function technique. We design a vacuum layer between metallic electrode and quantum dots to block the contribution of phonon transport and investigate the thermal rectification properties of electron transport. Compared with the case of parallel quantum dots (PQDs), the thermal rectification mechanism of SCQDs is different from that of PQDs. We also study the effects of quantum dot size and quantum dot location on thermal rectification properties of SCQDs. We have demonstrated that the thermal rectification properties can be observed in SCQDs in the absence of phonon heat current, where the energy level difference between dots and the energy level shift arising from the thermal voltage are required.

    第一章 導論 1 1-1 熱整流的簡介 1 1-2 熱整流發展進程 2 1-3 研究動機 5 第二章 系統模型 7 2-1 串接耦合量子點系統(SERIALLY COUPLED QUANTUM DOTS, SCQDS) 8 2-2 塞貝克效應(SEEBECK EFFECT) 15 2-3 電位勢差對量子點能階的偏移 17 第三章 熱整流效應 20 3-1 量子點系統內的熱整流現象 21 3-1-1 PQDs熱整流現象分析 22 3-1-2 SCQDs熱整流現象分析 25 3-1-3 PQDs與SCQDs的熱整流現象比較 30 3-2 量子點尺寸大小對於熱整流現象的影響 32 3-2-1 尺寸擾動(size fluctuation)對熱整流現象的影響 32 3-2-2 Detuning energy對熱整流現象的影響 36 3-3 量子點位置對於熱整流現象的影響 41 3-3-1 能階偏移係數對於熱整流現象的影響 42 3-3-2 電子躍遷強度與穿隧率對熱整流現象的影響 45 第四章 結論 48 參考文獻 51

    [1] B. Li, L. Wang, and G. Casati, "Negative differential thermal resistance and thermal transistor", Appl. Phys. Lett. 88, 143501 (2006).
    [2] L. Wang and B. Li, "Thermal Logic Gates: Computation with Phonons", Phys. Rev. Lett. 99, 177208 (2007).
    [3] B. Norton and S. D. Probert, "Achieving Thermal Rectification in Natural-Circulation Solar-Energy Water Heaters ", Applied Energy 14, 211 (1983).
    [4] A. A. MOHAMAD, "Integerated Solar Collector–Storage Tank System With Thermal Diode", Solar Energy 61, 211 (1997).
    [5] A. M. Kolpak and J. C. Grossman, "Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels", Nano Lett. 11, 3156 (2011).
    [6] C. Starr, "The Copper Oxide Rectifier", J. Appl. Phys. 7, 15 (1936).
    [7] M. H. Barzelay, K. N. Tong, and G. F. Holloway, "Effect of pressure on thermal conductance of contact joints", NACA TN, 3295 (1955).
    [8] A. M. Clausing, "Heat transfer at the interface of dissimiliar metals-The influence of thermal strain", Int. J. Heat Mass Transfer 9, 791 (1966).
    [9] D. V. Lewis and H. C. Perkins, "Heat transfer at the interface of stainless steel and aluminum-The influence of surface conditions on the directional effect", Int. J. Heat Mass Transfer 11, 1371 (1968).
    [10] P. W. O'Callaghan, S. D. Probert, and A. Jones, "A thermal rectifier", J. Phys. D: Appl. Phys. 3, 1352 (1970).
    [11] C. Marucha, J. Mucha, and J. Rafalowicz, "Heat flow rectification in inhomogeneous GaAs", Physica Status Solidi A 31, 269 (1975).
    [12] A. Jezowski and J. Rafalowicz, "Heat-flow asymmetry on a junction of quartz with graphite", Physica Status Solidi A 47, 229 (1978).
    [13] K. Balcerek and T. Tyc, "Heat flux rectification in tin-α-brass system", Physica Status Solidi A 47, 125K (1978).
    [14] N. A. Roberts and D. G. Walker, "A review of thermal rectification observations and models in solid materials", Int. J. Therm. Sci. 50, 648 (2011).
    [15] H. Hoff, "Asymmetrical heat conduction in inhomogeneous materials", Physica A 131, 449 (1985).
    [16] B. Hu, D. He, L. Yang, and Y. Zhang, "Thermal rectifying effect in macroscopic size", Phys. Rev. E 74, 060201 (2006).
    [17] M. Peyrard, "The design of a thermal rectifier", Europhys. Lett. 76(1), 49 (2006).
    [18] C. Dames, "Solid-state thermal rectification with existing bulk materials", J. Heat Transfer 131, 061301 (2009).
    [19] D. B. Go and M. Sen, "On the Condition for Thermal Rectification Using Bulk Materials", J. Heat Transfer 132, 124502 (2010).
    [20] M. Terraneo, M. Peyrard, and G. Casati, "Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier", Phys. Rev. Lett. 88, 094302 (2002).
    [21] B. Li, L. Wang, and G. Casati, "Thermal diode: rectification of heat flux", Phys. Rev. Lett. 93, 184301 (2004).
    [22] D. Segal and A. Nitzan, "Spin-boson thermal rectifier," Phys. Rev. Lett. 94, 034301 (2005).
    [23] B. Hu, L. Yang, and Y. Zhang, "Asymmetric heat conduction in nonlinear lattices", Phys. Rev. Lett. 97, 124302 (2006).
    [24] N. Zeng and J.-S. Wang, "Mechanisms causing thermal rectification: the influence of phonon frequency, asymmetry, and nonlinear interactions", Phys. Rev. B 78, 024305 (2008).
    [25] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, "Solid-State Thermal Rectifier", Science 314, 1121 (2006).
    [26] G. Wu and B. Li, "Thermal rectification in carbon nanotube intramolecular junctions: molecular dynamics calculations", Phys. Rev. B 76, 085424 (2007).
    [27] M. Alaghemandi, F. Leroy, E. Algaer, M. Bohm, and F. Muller-Plathe, "Thermal rectification in mass-graded nanotubes: a model approach in the framework of reverse non-equilibrium molecular dynamics simulations", Nanotechnology 21, 075704 (2010).
    [28] J. Hu, X. Ruan, and Y. P. Chen, "Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study", Nano Lett. 9, 2730 (2009).
    [29] N. Yang, G. Zhang, and B. Li, "Thermal rectification in asymmetric graphene ribbons", Appl. Phys. Lett. 95, 033107 (2009).
    [30] M. Schmotz, J. Maier, E. Scheer, and P. Leiderer, "A thermal diode using phonon rectification", New J. Phys. 13, 113027 (2011).
    [31] T. Ruokola, T. Ojanen, and A.-P. Jauho, "Thermal rectification in nonlinear quantum circuits", Phys. Rev. B 79, 144036 (2009).
    [32] R. Scheibner, M. Konig, D. Reuter, A. Weick, C. Gould, and H. Buhmann, "Quantum dot as thermal rectifier", New J. Phys. 10, 083016 (2008).
    [33] D. M. T. Kuo and Y. C. Chang, "Thermoelectric and thermal rectification properties of quantum dot junctions", Phys. Rev. B 81, 205321 (2010).
    [34] T. Ruokola and T. Ojanen, "Single-electron heat diode: Asymmetric heat transport between electronic reservoirs through Coulomb islands", Phys. Rev. B 83, 241404 (2011).
    [35] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductions (Springer, Heidelberg, 1996).
    [36] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, "Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System", Science 297, 1313 (2002).
    [37] Y. Meir and N. S. Wingreen, "Landauer formula for the current through an interacting electron region", Phys. Rev. Lett. 68, 2512 (1992).
    [38] D. M. T. Kuo and Y. C. Chang, "Electron tunneling rate in quantum dots under a uniform electric field", Phys. Rev. B 61, 11051 (2000).
    [39] D. M. T. Kuo and Y. C. Chang, "Bipolar thermoelectric effect in a serially coupled quantum dot system ", Jpn. J. Appl. Phys. 50, 105003 (2011).
    [40] Y.-C. Tseng and D. M.-T. Kuo, "Current Rectification and Seebeck Coefficient of Serially Coupled Double Quantum Dots", Jpn. J Appl. Phys. 52, 014002 (2013).
    [41] D. M. T. Kuo, "Thermoelectric properties of double quantum dots embedded in a nanowire", Jpn. J. Appl. Phys. 50, 025003 (2011).

    QR CODE
    :::