| 研究生: |
蕭煒傑 WEI-JIE Shau |
|---|---|
| 論文名稱: |
基於未來自我與依附理論設計之個別化AI寵物機器人SAGE-R:促進長期持續學習參與並提升學習成效 SAGE-R: A Personalized Future Self AI Pet Robot Designed Based on Attachment Theory to Enhance Long-Term Learning Engagement and Learning Outcomes |
| 指導教授: |
陳國棟
Gwo-Dong Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 教育機器人 、寵物機器人 、依附理論 、長期關係 、未來自我理論 、心理擁有感 |
| 外文關鍵詞: | Educational Robot, Pet Robot, Attachment Theory, Long-Term Engagement, Future Self Theory, Psychological Ownership |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
教育機器人在課堂中已被證實能有效提升學生學習動機與參與度。然而,傳統教育機器人仍面臨幾項挑戰:互動受限於實體空間與課堂時間;資源限制導致學生難以擁有專屬且個別化設定的機器人;互動設計多聚焦於短期任務,缺乏引導學生朝長期目標前進的機制,學習動機難以持久。本研究提出整合實體與數位形式的AI寵物機器人,並命名為Self-Agent for Growth & Expertise with Resonance(SAGE-R)。透過多管道學習機制,提供學生在課堂內外皆能持續互動的學習體驗,突破時間與空間限制。融合依附理論與心理擁有感,學生可個別化寵物外觀、聲音與個性,透過精靈「附身」概念確保虛實載體中角色一致性,系統整合ChatGPT與未來自我理論,以成為領域專家為未來目標,寵物作為現在與未來自我共鳴的橋梁,配合課程大綱與學習評量設計學習活動,學生為照顧寵物與未來自我而投入學習。根據社會相互依賴理論,安排與寵物共同展演的最終目標,使學生與寵物合作學習直到最後。本研究於桃園某科技大學針對101名餐旅管理系學生進行為期十八周的實驗,透過前後測、問卷與訪談進行多元評估,並以SPSS分析。結果顯示,相較於傳統AI學習夥伴,本SAGE-R系統更能增進學生的情感連結與責任感,引導學生將當下努力與長期目標連結,穩定參與學習並提升成效。
Educational robots can enhance students’ motivation and engagement. However, traditional designs face limitations due to classroom time and space constraints, resource constraints, and a lack of long-term goal orientation. This study proposes Self-Agent for Growth & Expertise with Resonance (SAGE-R), a personalized AI pet robot system. SAGE-R integrates physical and virtual interaction channels, enabling students to learn anytime and anywhere. Based on Attachment Theory and Psychological Ownership, students can personalize the genie’s appearance, voice, and personality. The system incorporates the Future Self Theory, guiding students toward a future expert identity. The pet creates a sense of resonance between students' present and future selves. Learning activities align with the syllabus and rubric, encouraging students to care for both the pet and their future self. Based on Social Interdependence Theory, a collaborative final performance with the pet fosters long-term cooperation. A 18-week experiment with 101 hospitality management students in Taoyuan, using pre-/post-tests, questionnaires, interviews, and SPSS analysis, shows that SAGE-R effectively sustains students' learning motivation and improves outcomes.
唐浩(2024)。使用者自定義之數位情境學習系統。國立中央大學資訊工程系AI碩士班學位論文。
彭治揚(2024)。基於依附理論設計的多管道AI寵物機器人以維持長期學習參與並提升學習成效。國立中央大學資訊工程系軟體工程碩士班學位論文。
黃招憲、郭德信、王淑麗(2005)。 餐旅日語(上)。 致良出版社。
黃招憲、許惠端、王靖絜(2010)。 餐旅日語(下)。 致良出版社。
Abbott, R., Orr, N., McGill, P., Whear, R., Bethel, A., Garside, R., & Thompson Coon, J. (2019). How do “robopets” impact the health and well-being of residents in care homes? A systematic review of qualitative and quantitative evidence. International Journal of Older People Nursing, 14(3), e12239.
Adelman, R. M., Herrmann, S. D., Bodford, J. E., Barbour, J. E., Graudejus, O., Okun, M. A., & Kwan, V. S. (2017). Feeling closer to the future self and doing better: Temporal psychological mechanisms underlying academic performance. Journal of personality, 85(3), 398-408.
Al Hakim, V. G., Yang, S. H., Wang, J. H., Chang, Y. C., Lin, H. H., & Chen, G. D. (2023, July). A pet-like model for educational robots: Using interdependence theory to enhance learning and sustain long-term relationships. In 2023 IEEE International Conference on Advanced Learning Technologies (ICALT) (pp. 100-104). IEEE.
Ainsworth, M. D. S., Blehar, M. C., Waters, E., & Wall, S. N. (2015). Patterns of attachment: A psychological study of the strange situation. Psychology press.
Albadarin, Y., Saqr, M., Pope, N., Siddique, M., Alzahrani, A. I., Al Adwan, A., & Obeid, N. (2024). A systematic literature review of empirical research on ChatGPT in education. Discover Education, 3, 60.
Ali, A., Ur Rehman, A., Aslam, S., & Khan, A. (2024). ChatGPT in education: Opportunities, challenges, and future research directions—A systematic literature review. arXiv preprint arXiv:2401.09686.
Avey, J. B., Avolio, B. J., Crossley, C. D., & Luthans, F. (2009). Psychological ownership: Theoretical extensions, measurement, and relation to work outcomes. Journal of Organizational Behavior, 30(2), 173–191.
Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983.
Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. Journal of the Learning Sciences, 9(4), 403–436.
Baxter, P., Ashurst, E., Read, R., Kennedy, J., & Belpaeme, T. (2017). Robot education peers in a situated primary school study: Personalisation promotes child learning. PloS one, 12(5), e0178126.
Beck, A. M., & Madresh, E. A. (2008). Romantic partners and four-legged friends: An extension of attachment theory to relationships with pets. Anthrozoös, 21(2), 115–127.
Buchem, I., Tur, G., & Hoelterhof, T. (2014). Learner control in personal learning environments: A cross-cultural study. Journal of Literacy and Technology, 15(2), 14–39.
Butera, F., & Buchs, C. (2019). Social interdependence and the promotion of cooperative learning. In K. Sassenberg & M. Vliek (Eds.), Social Psychology in Action (pp. 111–127). Springer.
Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social robots for education: A review. Science robotics, 3(21), eaat5954.
Bickmore, T. W., & Picard, R. W. (2005). Establishing and maintaining long term human computer relationships. ACM Transactions on Computer Human Interaction, 12(2), 293–327.
Bowlby, J. (1969). Attachment and loss: Vol. 1. Attachment. Basic Books.
Cohen, J. (1992). Statistical power analysis. Current directions in psychological science, 1(3), 98-101.
Delgosha, M. S., & Hajiheydari, N. (2021). How human users engage with consumer robots? A dual model of psychological ownership and trust to explain post-adoption behaviours. Computers in Human Behavior, 117, 106660.
Donnermann, M., Schaper, P., & Lugrin, B. (2022, August). Investigating adaptive robot tutoring in a long-term interaction in higher education. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 171-178). IEEE.
Dounas-Frazer, D. R., Stanley, J. T., & Lewandowski, H. J. (2015). Toward equity in physics education: A review of gender and race/ethnicity research. arXiv preprint, arXiv:1507.03947.
Dounas-Frazer, D. R., & Lewandowski, H. J. (2017). Student ownership of projects in an upper-division optics laboratory course: A multiple case study of successful experiences. Physical Review Physics Education Research, 13(2), 020136.
Ersner-Hershfield, H., Bailenson, J., & Carstensen, L. L. (2008). A vivid future self: Immersive virtual reality enhances retirement saving. In Poster to be presented at the Association for Psychological Science Annual Convention, Chicago, IL.
Fung, K. Y., Fung, K. C., Lui, T. L. R., Sin, K. F., Lee, L. H., Qu, H., & Song, S. (2025). Exploring the impact of robot interaction on learning engagement: a comparative study of two multi-modal robots. Smart Learning Environments, 12(1), 12.
George, D. (2011). SPSS for windows step by step: A simple study guide and reference, 17.0 update, 10/e. Pearson Education India.
Hwang, G. J. (2014). Definition, framework and research issues of smart learning environments-a context-aware ubiquitous learning perspective. Smart Learning Environments, 1, 1-14.
Magno, C. (2010). Assessing academic self regulated learning among Filipino college students: The factor structure and item fit. International Journal of Educational and Psychological Assessment, 5, 61–76.
Marin, T., Sartor, E., & Gallo, A. (2015, November). A multi-platform for a better learning and teaching experience. In Conference Proceedings. Innovation in Language Learning 2015.
Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
Hershfield, H. E., Goldstein, D. G., Sharpe, W. F., Fox, J., Yeykelis, L., Carstensen, L. L., & Bailenson, J. N. (2011). Increasing saving behavior through age-progressed renderings of the future self. Journal of Marketing Research, 48(SPL), S23–S37.
Fujita, M. (2001). AIBO: Toward the era of digital creatures. The International Journal of Robotics Research, 20(10), 781–794.
Hershfield, H. E., Cohen, T. R., & Thompson, L. (2012). Short horizons and tempting situations: Lack of continuity to our future selves leads to unethical decision making and behavior. Organizational Behavior and Human Decision Processes, 117(2), 298–310.
Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational researcher, 38(5), 365-379.
Johnson, D. W., & Johnson, R. T. (2011). Social interdependence theory. The encyclopedia of peace psychology.
Kanda, T., Hirano, T., Eaton, D., & Ishiguro, H. (2004). Interactive robots as social partners and peer tutors for children: A field trial. Human–Computer Interaction, 19(1-2), 61-84.
Kraus, M., Betancourt, D., & Minker, W. (2023, August). Does it affect you? Social and learning implications of using cognitive-affective state recognition for proactive human-robot tutoring. In 2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 928-935). IEEE.
Laal, M. (2013). Positive interdependence in collaborative learning. Procedia – Social and Behavioral Sciences, 93, 486–489.
Lampropoulos, G. (2025). Social robots in education: Current trends and future perspectives. Information, 16(1), 29.
Lawton, L. (2017). Taken by the Tamagotchi: How a toy changed the perspective on mobile technology. The iJournal: Student Journal of the Faculty of Information, 2(2).
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Riedel, S. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, 33, 9459–9474.
Leite, I., Martinho, C., & Paiva, A. (2013). Social robots for long-term interaction: A survey. International Journal of Social Robotics, 5(2), 291–308.
Ligthart, M. E. U., Neerincx, M. A., & Hindriks, K. V. (2022). Memory based personalization for fostering a long term child robot relationship. In Proceedings of the 17th ACM/IEEE International Conference on Human Robot Interaction (pp. 80–89). IEEE.
Ligthart, M. E. U., Van Bindsbergen, K. L. A., Fernhout, T., Grootenhuis, M. A., & Hindriks, K. V. (2022). Getting acquainted: First steps for child robot relationship formation. Frontiers in Robotics and AI, 9, Article 853665.
Loes, C. N. (2022). The effect of collaborative learning on academic motivation. Teaching & Learning Inquiry, 10(4).
Markus, H., & Nurius, P. (1986). Possible selves. American Psychologist, 41(9), 954–969.
Melson, G. F., Kahn, P. H., Beck, A., & Friedman, B. (2009). Robotic pets in human lives: Implications for the human–animal bond and children's development. Anthrozoös, 22(4), 379–389.
Mora-Zarate, J. E., Garzón-Castro, C. L., & Rivillas, J. A. C. (2024). Learning signs with NAO: humanoid robot as a tool for helping to learn Colombian Sign Language. Frontiers in Robotics and AI, 11, 1475069.
Neumann, D. L. (2020). Social robots and young children: A review of contributions to learning and engagement. Educational Psychology Review, 32(4), 1285–1309.
Ogata, H., & Yano, Y. (2004, March). Knowledge awareness map for computer-supported ubiquitous language-learning. In The 2nd IEEE International Workshop on Wireless and Mobile Technologies in Education, 2004. Proceedings. (pp. 19-26). IEEE.
Oyserman, D., Bybee, D., & Terry, K. (2006). Possible selves and academic outcomes: How and when possible selves impel action. Journal of personality and social psychology, 91(1), 188.
Oyserman, D. (2009). Identity-based motivation: Implications for action-readiness, procedural-readiness, and consumer behavior. Journal of Consumer Psychology, 19(3), 250–260.
Papert, S. (1980). Children, computers, and powerful ideas (Vol. 10, pp. 978-3). Eugene, OR, USA: Harvester.
Pataranutaporn, P., Winson, K., Yin, P., Lapapirojn, A., Ouppaphan, P., Lertsutthiwong, M., Maes, P., & Hershfield, H. (2024). Future You: A conversation with an AI generated future self reduces anxiety, negative emotions, and increases future self continuity. arXiv preprint.
Tejwani, R., Moreno, F., Jeong, S., Park, H. W., & Breazeal, C. (2020). Migratable AI: Effect of identity and information migration on users’ perception of conversational AI agents. arXiv preprint arXiv:2007.05801.
Van Dyne, L., & Pierce, J. L. (2004). Psychological ownership and feelings of possession: Three field studies predicting employee attitudes and organizational citizenship behavior. Journal of Organizational Behavior, 25(4), 439–459.
Rabb, N., Law, T., Chita Tegmark, M., & Scheutz, M. (2022). An attachment framework for human robot interaction. International Journal of Social Robotics.
Razin, Y. S., & Feigh, K. M. (2021). Committing to interdependence: Implications from game theory for human–robot trust. Paladyn, Journal of Behavioral Robotics, 12(1), 481–502.
Sebo, S. S., Dong, L. L., Chang, N., & Scassellati, B. (2020). Strategies for the inclusion of human members within human–robot teams. Proceedings of the 2020 ACM/IEEE International Conference on Human Robot Interaction (HRI '20) (pp. 9 pages).
Shahriar, S., & Hayawi, K. (2023). Let’s have a chat! A conversation with ChatGPT: Technology, applications, and limitations. arXiv preprint arXiv:2304.01852.
Tanaka, F., Cicourel, A., & Movellan, J. R. (2007). Socialization between toddlers and robots at an early childhood education center. Proceedings of the National Academy of Sciences, 104(46), 17954–17958.
Pierce, J. L., Kostova, T., & Dirks, K. T. (2001). Toward a theory of psychological ownership in organizations. Academy of Management Review, 26(2), 298–310.
Yun, H. S., Taliaronak, V., Kirtay, M., Chevelère, J., Hübert, H., Hafner, V. V., ... & Lazarides, R. (2023). Challenges in designing teacher robots with motivation based gestures. arXiv preprint arXiv:2302.03942.
Zhou, Y., Zhang, Z., & Chen, H. (2025). Integrating AI into clinical education: Evaluating general practice trainees’ proficiency in detecting AI-generated hallucinations from ChatGPT 4o. BMC Medical Education, 25, 406.