跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許芷瑀
Chih-Yu Hsu
論文名稱: 用電沉積法在多孔性氧化鋁模板中成長金屬奈米線
electrochemical synthesis of nanowires in anodic aluminum oxide
指導教授: 徐新光
Shin-Guang, Shyu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 奈米線氧化鋁電沉基
外文關鍵詞: nanowire, electrodeposite, AAO
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以純度為99.99 % 的鋁基材於0.3M草酸溶液下進行二次的陽極處理,製備孔洞直徑為60奈米、厚度為90微米的氧化鋁膜模板,作為沉積鉍(Bismuth)與鈷(Cobalt)金屬奈米線之模板。
    三電極系統中以背後鍍金的多孔性氧化鋁膜模板為工作電極,用電化學沉積法在0.008M硝酸鉍溶液與0.14M硫酸鈷溶液中,分別施加電壓為-0.15伏特與-1.0伏特進行氧化還原反應,使電鍍溶液中的金屬離子還原沉積在氧化鋁膜模板的孔洞中,得到排列整齊直徑為60奈米的鉍金屬與75奈米的鈷金屬奈米線陣列。
    利用物理性質測量系統(PPMS)與超導量子干涉測量儀(SQUID)測量鈷奈米線的電阻與磁性和溫度的關係。


    The anodic aluminum oxide (AAO) was prepared from high-purity (99.99%) aluminum foil in 0.3M oxalic acid electrolyte by a two-step anodization process. The anodic aluminum oxide (AAO) with pore size 60 nm and channel length 90 μm was used to fabricate pure bismuth and cobalt nanowires.
    A Au layer was sputtered on one side of the anodic aluminum oxide (AAO) to serve as the working electrode in a standard three-electrode electrochemical cell. Solutions of 0.008M bismuth nitrate and 0.14M cobalt sulfate heptahydrate were used as electrolytes of the electrodeposition process of the Bi and Co nanowires respectively. The potentiostatic electrochemical deposition of Bi and Co nanowires were performed with -0.15 V and -1.0V respectively. Diameters of the Bi and the Co nanowires were 60 nm and 75 nm respectively.
    The Physical Property Measurement System (PPMS) and Superconducting Quantum Interference Device Magnetometer (SQUID) were used to measure the resistance and magnetic properties of Co nanowire.

    中文摘要.......................................................................................................I 英文摘要......................................................................................................II 誌謝…………………………………………………………....................III 目錄…………………………………………………………....................IV 圖目錄…………………………………………...……………………....VII 表目錄………………………………...…………………….....................XI 第一章 緒論……………………………………………………………...1 1-1前言……………………………………………………………...1 1-2多孔形氧化鋁膜簡介…………………………………………...2 1-3多孔性氧化膜之生長機制……………………………………...4 1-4 奈米材料簡介…………………………………………………..6 1-5 一維奈米材料製備方法………………………………………..7 1-6 研究目的………………………………………………………11 第二章 實驗…………………………………………………..................12 2-1實驗藥品………………………………………….....................12 2-2實驗儀器……………………………………………………….13 2-2-1 鋁片陽極處理之儀器………..…………………………..13 2-2-2 製備電極、電化學之儀器………………………………13 2-2-3 分析儀器…………..……………………………………..14 2-3 實驗步驟………………………………………………………15 2-3-1 氧化鋁模板的製備…………………………....................15 2-3-2 金屬奈米線之製備…………………………....................20 第三章 結果與討論..................................................................................24 3-1 多孔性氧化鋁…………………………....................................24 3-1-1 電解拋光…………..……………......................................24 3-1-2 陽極處理…………………………....................................24 3-1-3 除去障礙層…………………………................................27 3-2 沉積金屬奈米線………..………………..................................31 3-2-1 熱蒸鍍背電極……………………………………………31 3-2-2 電沉積反應………………………………………………32 3-3 鉍金屬奈米線之分析…………………………………………34 3-3-1 SEM觀察表面型態與EDS分析…………………………..34 3-3-2 粉末X-ray繞射分析…………...………………………...42 3-3-3 TEM與EDS分析…………..…………………………….45 3-4 鈷金屬奈米線之分析……..…………………………………..48 3-4-1 SEM觀察表面型態與EDS分析…………………………48 3-4-2 粉末X-ray繞射分析……………………………………..53 3-4-3 TEM與EDS分析…………………………………………55 3-5 物理性質的量測……...……………………………………….58 3-5-1 電阻量測………………………………………………….58 3-5-2 磁性量測………………………………………………….61 第四章 結論……………………………………………………………..65 參考文獻…………………………………………………………………66

    [1] Reed, M. A.; Randall, J. N.; Aggrawal, R. J.; Matyi, R. J.; Moore, T. M.; Wetsel, A. E. Phys. Rev. Lett. 1988, 60, 535
    [2] Pang, S. W.; Tamamura, T.; Nakao, M.; Ozawa, A.; Masuda, H. J. Vac. Sci. Technol., B 1998, 16, 1145
    [3] Wanger, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89
    [4] Westwater, J.; Gosain, D. P.; Tomiya, S.; Usui, S.; Ruda, H. J. Vac. Sci. Technol., B 1997, 15, 554
    [5] Wang, D.; Dai, H. Angew. Chem. Int. Ed. 2002,41, 4783
    [6] Kong, J.; Cassel, A. M.; Dai, H. Chem. Phys. Lett.1998, 292, 567
    [7] Cho, J. U.; Liu, Q. X.; Min, J. H.; Ko, S. P.; Kim, Y. K. J. Magn. Magn. Mater. 2006, 304, 213
    [8] Yin, A. J.; Li, J.; Jian, W.; Bennett, A. J.; Xu, J. M. Appl. Phys. Lett. 2001, 79, 1039
    [9] Li, J.; Papadopoulos, C.; Xu, M. M.; Moskovits, M. Appl. Phys. Lett. 1999, 75, 367
    [10] Li, M. K.; Lu, M.; Kong, L. B.; Guo, X.Y.; Li, H. L. Mater. Sci. Eng., A 2003, 354, 92
    [11] Li, L.; Zhang, Y.; Li, G.H.; Song, W.H.; Zhang, L.D. Appl. Phys. A 2005, 80, 1053
    [12] Zhao, A.; Zhang, L.; Pang, Y.; Ye, C. Appl. Phys. A 2005, 80, 1725
    [13] Alivisatos, A. P. Science, 1996, 271, 933
    [14] Zhou, H. S.; Honma, I.; Komiyama, H. Phys. Rev. B 1994, 50, 12052
    [15] Takagahara, T.;Takeda, K. Phys.Rev., B 1992, 46, 15578
    [16] Peng, Y.; Shen, T. H.; Ashworth, B. J. Appl. Phys. 2003, 93, 7050
    [17] Kong, Y. C.; Yu, D. P. Appl. Phys. Lett. 2001, 78, 407
    [18] Li, L.; Zhang, Y.; Yang, Y. W.; Huang, X. H.; Li, G. H.; Zhang, L. D. Appl. Phys. Lett. 2005, 87, 031219
    [19] Li, F.; Zhang, L.; Metzger, R. M. Chem. Mater. 1998, 10, 2470
    [20] Lohrengel, M. M. Mater. Sci. Eng. 1993, R11, 243
    [21] Thompson, G. E.; Wood G. C. Nature, 1981, 290, 230
    [22] Tonucci, R. J.; Justus, B. L. Science, 1992, 258, 783
    [23] Keller, F.; Hunter, M. S.; Robinson, D. L. J. Electrochem. Soc. 1953,
    100, 411
    [24] Diggle, J. W.; Downie, T. C.; Goulding, C. W. Chem. Rev. 1969,
    69, 365.
    [25] Tsuya, N.; Tokushima, T.; Wakui, Y.; Saito, Y.; Nakamura, H.;
    Hayano, S.; Furugori, A.; Tanaka, M. IEEE Trans. Magn. 1986, 22, 1140
    [26] Masuda, H.; Fukuda, K. Science. 1995, 268, 1466
    [27] Masuda, H.; Satoh, M. Jpn. J. Appl. Phys. 1996, 35, 126
    [28] Thompson, G. E. Thin Solid Films. 1997, 297, 192
    [29] Thompson, G. E. Journal of Thin Solid Films. 1997, 297, 192
    [30] Li, F.; Zhang, L.; Metzger,R. M. Chemical of Materials, 1998, 10, 2470
    [31] Kubo, R. J.Phys.Soc.Japan, 1962, 17, 975
    [31] Kubo, R. J.Phys.Soc.Japan, 1962, 17, 975
    [32] Alivisatos, A. P. Science, 1996, 271, 933
    [33] Alivisatos, A. P.; Harris, T. D.; Carroll, P.J.; Steigerwald, M. L.; Brus,     L. E. J. Chem. Phys. 1989, 90, 3463
    [34] Fujita, J.; Shimizu, F. Mater. Sci. Eng., B 2002, 96, 159
    [35] Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R.E. Nature, 1985, 318, 162
    [36] Iijima, S. Nature, 1991, 354, 56
    [37] Wanger, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89
    [38] Wang, D.; Dai, H. Angew. Chem. Int. Ed. 2002,41, 4783
    [39] Yu, D. P.; Hang, Q. I.; Ding, Y. Appl. Phys. Lett. 1998, 26, 3458
    [40] Possin, G. E. Rev.Sci. Instrum. 1970, 41, 772
    [41] Sun, L.; Searson, P. C. Appl. Phys. Lett. 1999, 74, 2803
    [42] Whitney, T. M.; Jiang, J. S.; Searson, P. C.; Chien, C. L. Science 1993, 261, 16
    [43] Li, A. P.; Muller, F.; Birner, A.; Nielsch, K.; Gosele, U. J. Appl. Phys. 1998, 84, 6023
    [44] Li, H.; Xu, C. L.; Zhao, G. Y.; Li, H. L. J. Phys. Chem. B 2005, 109, 3759
    [45] Schwarzacher, W.; Kasyutich, O. I.; Evans, P. R.; Darbyshire, M. G.; Yi, G.; Fedosyuk, V. M.; Rousseaux, F.; Cambril, E.; Decaninim D. J. Magn. Magn. Mater. 1999, 198, 185
    [46] Cho, J. U.; Liu, Q. X.; Min, J. H.; Ko, S. P.; Kim, Y. K. J. Magn. Magn. Mater. 2006, 304, 213
    [47] Jin, C. G.; Jiang, G. W.; Liu, W. F.; Cai, W. L.; Yao, L. Z.; Yao, Z.; Li, X. G. J. Mater. Chem. 2003, 13, 1743
    [48] Yin, A. J.; Li, J.; Jian, W.; Bennett, A. J.; Xu, J. M. Appl. Phys. Lett. 2001, 79, 1039
    [49] Pan, H.; Sun, H.; Poh, C.; Feng, Y.; Lin, J. Nanotechnology 2005, 16, 1559
    [50] Ba, L.; Li, W. S. J. Phys. D: Appl. Phys. 2000, 33, 2527
    [51] Brumlik, C. J.; Menon, V. P.; Martin, C. R. J. Mater. Res. 1994, 9, 1174
    [52] Craig, R. G.; Restorative Dental Materials. 9th ed., St. Louis: C. V. Mosby, 1993
    [53] Boyer, H. E.; Gall, T. L. Metals Handbook. Desk Edition. Metals Park, Ohio: American Society for Metals, 1985.
    [54] McLean, J. W.; Hughes, T. H. The reinforcement of dental porcelain with the ceramic oxides. Brit. Dent. J., 1965, 119, 251
    [55] Lohrengel, M. M. Mater. Sci. Eng. 1993, R11, 243
    [56] Zhang, Z.; Gekhtman, D.; Dresselhaus, M. S.; Ying, J. Y.
    Chem.Mater. 1999, 11, 1659
    [57] Boukai, A.; Xu, K.; Heath, J. R. Adv.Mater. 2006, 18, 864
    [58] 熊楚強, 王月 電化學, 2004
    [59] Fert, A.; Lottis, D. K.; Concise Encyclopedia of Magnetic and Superconducting Materials, edited by Evetts, J. 1992, 291
    [60] Budevski, E.; Staikov, G.; Lorenz, W. J. Electrochemical Phase Formation and Growth: An Introduction to the Initial Stage of Metal Deposition 1996
    [61] Pan, H.; Sun, H.; Poh, C. Feng, Y.; Lin, J. Nanotechnology 2005, 16, 1559

    QR CODE
    :::