跳到主要內容

簡易檢索 / 詳目顯示

研究生: 祁慕尚
Musenge Chikopa
論文名稱: 史瓦濟蘭於回收農業及林業殘料用以開發生質能源潛力研究
Bioenergy Potential of Agriculture and Forest Residues in Swaziland
指導教授: 廖萬里
Wan-Li, Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 國際永續發展碩士在職專班
International Environment Sustainable Development Program
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 116
中文關鍵詞: 農業殘料林業殘料理論能源潛力永續能源潛力殘料與產量比例
外文關鍵詞: Forestry residue, Theoretical energy potential, Sustainable energy potential, Residue to product ration
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究評估於史瓦濟蘭將農業及林業之殘料回收,
    用以開發生質能源的潛勢。史瓦濟蘭年產 4.408
    公噸的農業與林業殘料,經由理論計算之能源潛力
    是每年1015 焦耳 (60.67 petajoule/年,PJ/y);
    於永續能源潛力 (sustainable energy potential)
    方面估計,這些殘料可提供 52.3 PJ/y的能源,其中,
    農業殘料貢獻 89.73%,而以甘蔗渣所占比例最高,
    林業殘料為 10.27%。然而,這些頗具生質能潛力的殘料,
    目前尚未為史瓦濟蘭應用現代科技予以充分利用及開發
    成能源。對於此類農業與木業殘料轉換成生質能源的影響
    因素,於本研究進行了討論。


    This study assessed the energy potential of agriculture
    and forestry residue for the sustainable generation of
    power. The key to the methodology applied was to estimate
    crop and forestry residue harvesting for bioenergy while
    maintaining soil productivity and catering for competing
    residue uses. The theoretical energy potential of Swaziland estimated in this study was 60.7 petajoule per year (PJ/y) in the amount 4.408 megaton (Mt) of agricultural and forestry residues. In the estimation of sustainable energy potential, these examined residues could offer 52.3 PJ/y.The energy potential contribution of agricultural and forestry residue was 89.73% and 10.27%, respectively. Sugar cane is the most offer in energy potential of agricultural residue. However, these amount of residues currently not yet being utilized to develop maximum energy potential with modern technology in this nation. A discussion is made in this study on the factors influencing the potential conversion routes.

    摘要........................................................................................................................................ i Abstract ................................................................................................................................. ii Acknowledgements............................................................................................................... iii Table of Contents .................................................................................................................. iv List of Figures ...................................................................................................................... vii List of Tables......................................................................................................................... ix Nomenclature ......................................................................................................................... x Chapter 1 Introduction........................................................................................................ 1 1.1 Agriculture and Forestry Residues......................................................................... 1 1.2 Background on the Area of Study: Swaziland ....................................................... 2 1.2.1 Agriculture, Forestry and the Economy............................................................. 3 1.2.2 Agriculture and Forestry Production in Swaziland............................................ 5 1.2.3 Current Energy Situation.................................................................................. 10 1.3 Motivation............................................................................................................ 17 1.4 Scope of Study ..................................................................................................... 19 1.5 Limitations ........................................................................................................... 19 Chapter 2 Methodology .................................................................................................... 20 2.1 Boundaries ........................................................................................................... 20 2.2 Data Collection..................................................................................................... 21 2.3 Working Procedure............................................................................................... 21 2.3.1 Theoretical Energy Potential............................................................................ 24 2.3.2 Sustainable Energy Potential............................................................................ 26 2.3.3 Conversion Technology.................................................................................... 29 Chapter 3 Literature Review............................................................................................. 31 3.1 Current Scenario of Global Bioenergy................................................................. 31 3.2 Types of Biomass Residue ................................................................................... 33 3.3 Current Estimates for Swaziland in Literature..................................................... 34 3.3.1 Comparative Overview of Biomass Potentials from Similar Studies.............. 36 3.4 General Review of Factors Affecting Biomass Potential..................................... 40 3.4.1 Working Procedures......................................................................................... 40 3.4.2 Residue to Product Ratio (RPR) ...................................................................... 43 3.4.3 Residue Availability ......................................................................................... 46 3.4.4 Biomass Composition (McKendry 2002, Jenkins, Baxter and Miles, (1998) . 49 3.4.5 Biomass Measurable Characteristics (McKendry 2002, Jenkins, Baxter And Miles, (1998))............................................................................................................... 50 3.4.6 Conversion Technologies for Power Generation ............................................. 58 3.4.7 Costs of Biomass Power .................................................................................. 75 Chapter 4 Results and Discussion..................................................................................... 81 4.1 Results.................................................................................................................. 81 4.1.1 Agriculture residue potential............................................................................ 81 4.1.2 Forestry Residue Potential ............................................................................... 82 4.1.3 Theoretical Potential ........................................................................................ 83 4.1.4 Sustainable Potential........................................................................................ 84 4.1.5 Conversion Technology.................................................................................... 85 4.2 Discussion ............................................................................................................ 86 4.2.1 Residue to Product Ratio (RPR) ...................................................................... 86 4.2.2 Residue Availability ......................................................................................... 87 4.2.3 Plant Characteristics......................................................................................... 87 vi 4.2.4 Conversion Technology.................................................................................... 87 Chapter 5 Conclusion ....................................................................................................... 89 Chapter 6 Recommendations............................................................................................ 91 Reference.............................................................................................................................. 93 Appendix A .......................................................................................................................... 98 Appendix B ........................................................................................................................ 100 Appendix C ........................................................................................................................ 101

    African Development Bank “Swaziland Economy” (2014) Retrieved November 2015
    from the World Wide Web: http://www.afdb.org/en/countries/southern-
    africa/swaziland/swaziland-economic-outlook/

    Andrews, S. S. (2006) Crop Residue Removal for Biomass Energy Production: Effects on
    Soils and Recommendations. USDA White Paper. Retrieved June 2016, from the
    World Wide Web:
    http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053255.pdf.

    Batidzirai, B., Valk, M., Wicke, B., Junginger, M., Daioglou, V., Euler, W., & Faaij, A. P.
    C. (2016). Current and future technical, economic and environmental feasibility of
    maize and wheat residues supply for biomass energy application: Illustrated for
    South Africa. Biomass and Bioenergy, 92, 106-129.

    Chan, Y. (2008). Increasing soil organic carbon of agricultural land. Primefact, 735, 1-5.
    Retrieved July 30 2016, from the World Wide Web: http://www.sdsoil.com/wp-
    content/uploads/2014/11/Increasing-soil-organic-carbon.pdf

    Cutz, L., Haro, P., Santana, D., & Johnsson, F. (2016). Assessment of biomass energy
    sources and technologies: The case of Central America.Renewable and Sustainable
    Energy Reviews, 58, 1411-1431.

    Deepchand, K. (2005). Sugar cane bagasse energy cogeneration—lessons from Mauritius.
    In parliamentarian forum on energy legislation and sustainable development, Cape
    Town, South Africa (Vol. 10, p. 2005).

    Evans, A., Strezov, V., & Evans, T. J. (2010). Sustainability considerations for electricity
    generation from biomass. Renewable and Sustainable Energy Reviews, 14(5),
    1419-1427.

    F. Shafizadeh, Basic principles of direct combustion, in: S.S. Sofer, O.R. Zaborsky (Eds.),
    Biomass Conversion Processes for Energy and Fuels, Plenum, New York, 1981,
    pp. 103–124.

    FAOSTAT (Food and Agricultural Organization Statistic Platform) (2015), “FAOSTAT
    Domains, Forestry Production and Trade”, Retrieved March 2016 from the World
    Wide Web: http://faostat3.fao.org/faostat-gateway/go/to/download/F/FO/E.

    FAOSTAT (Food and Agricultural Organization Statistic Platform) Swaziland Crop
    Productin (2015), Retrieved March 2016 from the World Wide Web: “FAOSTAT
    Domains, Crop Production and Trade”, http://faostat3.fao.org/download/Q/QC/E,

    Gonzalez-Salazar, M. A., Morini, M., Pinelli, M., Spina, P. R., Venturini, M., Finkenrath,
    M., & Poganietz, W.-R. (2014). Methodology for estimating biomass energy
    potential and its application to Colombia. Applied Energy, 136, 781-796.

    Heuzé V., Tran G., Giger-Reverdin S., 2015. Pineapple by-products. Feedipedia, a
    programme by NRA, CIRAD, AFZ and FAO Retrieved May 2016 from the
    World Wide Web: http://www.feedipedia.org/node/676.

    Hiloidhari, M., Das, D., & Baruah, D. (2014). Bioenergy potential from crop residue
    biomass in India. Renewable and Sustainable Energy Reviews, 32, 504-512.

    Hoogwijk, M., Faaij, A., Van Den Broek, R., Berndes, G., Gielen, D., & Turkenburg, W.
    (2003). Exploration of the ranges of the global potential of biomass for energy.
    Biomass and bioenergy, 25(2), 119-133.

    IEA (2008), Combined Heat and Power: Evaluating the Benefits of Greater Global
    Investment, IEA/OECD, and Paris Retrieved February 2016 from the World Wide
    Web:
    https://www.iea.org/publications/freepublications/publication/chp_report.pdf

    IEA (International Energy Agency) (2014), “World Energy Outlook 2014”, Retrieved
    October 2015 from the World Wide Web: www.iea.org/publications/
    freepublications/publication/WEO2011_WEB.pdf

    IRENA (International Renewable Energy Agency) (2012), “Renewable Energy
    Technologies: Cost Analysis Series:” Retrieved June 2016 from the World Wide
    Web:
    https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost
    _Analysis-BIOMASS.pdf

    IRENA (International Renewable Energy Agency) (2014), “Swaziland Renewables
    Readiness Assessment:” Retrieved June 2015 from the World Wide Web:
    http://www.irena.org/DocumentDownloads/Publications/IRENA_RRA_Swazilan
    d_2014.pdf.

    Jenkins B.M. Ebeling J.M, Correlation of physical and chemical properties of terrestrial
    biomass with conversion, Proceedings Energy from Biomass and Wastes IX,
    Institute of Gas Technology, Chicago, IL, 1985.

    Jenkins, B., Baxter, L. L., & Miles, T. R. (1998). Combustion properties of biomass. Fuel
    processing technology, 54(1), 17-46.

    Jenkins. B.M Properties of biomass, Biomass Energy Fundamentals, EPRI TR-102107,
    Electric Power Research Institute, Palo Alto, CA, 1993.

    Jingura, R. M., Musademba, D., & Kamusoko, R. (2013). A review of the state of biomass
    energy technologies in Zimbabwe. Renewable and Sustainable Energy Reviews,
    26, 652-659.

    Jingura, R., & Matengaifa, R. (2008). The potential for energy production from crop
    residues in Zimbabwe. Biomass and Bioenergy, 32(12), 1287-1292.

    Leete, M., Damen, B., & Rossi, A. (2013). Swaziland. BEFS country brief. Retrieved
    November 2015 from the World Wide Web:
    http://www.fao.org/docrep/017/aq180e/aq180e.pdf.

    Lynd, L., Von Blottnitz, H., Tait, B., De Boer, J., Pretorius, I., Rumbold, K., & Van Zyl,
    W. (2003). Converting plant biomass to fuels and commodity chemicals in South
    Africa: a third chapter? South African Journal of Science, 99.

    McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass.
    Bioresource technology, 83(1), 37-46.

    McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies.
    Bioresource technology, 83(1), 47-54.

    Menne, Wally, and Ricardo Carrere. Swaziland, the Myth of Sustainable Timber
    Plantations. World Rainforest Movement, 2007.

    MNRE (2013) Ministry of Natural Resources and Energy “Household Energy Access
    Study”. Retrieved June 2016 from the World Wide Web:
    http://www.irena.org/DocumentDownloads/events/2015/Bioenergy%20Statistics
    %20Presentations/Household%20energy%20surveys/Swaziland_household%20e
    nergy%20access%20report.pdf.

    Mohammed, Y., Mustafa, M., Bashir, N., Ogundola, M., & Umar, U. (2014). Sustainable
    potential of bioenergy resources for distributed power generation development in
    Nigeria. Renewable and Sustainable Energy Reviews, 34, 361-370.

    Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil:
    a critical review. Energy & fuels, 20(3), 848-889.

    Okello, C., Pindozzi, S., Faugno, S., & Boccia, L. (2013). Bioenergy potential of
    agricultural and forest residues in Uganda. Biomass and Bioenergy, 56, 515-525.

    Papendick R.I, Moldenhauer. W.C (1995) “Crop Management to Reduce Soil Erosion and
    Improve Soil Quality” USDA-Agricultural Research Service, Northwest.
    Springfield (VA), p. 70 Conservation Report Number 40

    Potgieter J.G (2011). Agricultural Residue as a Renewable Energy Resource – Utilisation
    of Agricultural Residue in the Greater Gariep Agricultural Area as a Renewable
    Energy Resource. MSc Thesis Stellenbosch University, Cape Town, South Africa
    p. 85

    REASWA “Renewable Energy in Swaziland Case Study Brochure” (2004) Retrieved
    November 2015 from the World Wide Web:
    http://www.gubaswaziland.org/files/documents/resource11.pdf

    REN21 (2011), Renewables 2011: Global Status Report, REN21, and Paris. November
    2015 from the World Wide Web
    http://www.ren21.net/Portals/0/documents/Resources/GSR2011_FINAL.pdf

    REN21 RENEWABLES (2015) GLOBAL STATUS REPORT. November 2015 from the
    World Wide Web: http://www.ren21.net/wp-content/uploads/2015/07/REN12-
    GSR2015_Onlinebook_low1.pdf

    Scarlat, N., Blujdea, V., & Dallemand, J. F. (2011). Assessment of the availability of
    agricultural and forest residues for bioenergy production in Romania. Biomass and
    Bioenergy, 35(5), 1995-2005.

    SE4ALL ‘Kingdom of Swaziland, Sustainable Energy for All Country Action Plan’ (2014)
    Retrieved November 2015 from the World Wide Web:
    http://www.se4all.org/sites/default/files/Swaziland_RAGA_EN_Released.pdf

    SEC Swaziland Electricity Company 2014/2015 Annual Report Retrieved July 2016 from
    the World Wide Web:
    http://www.sec.co.sz/documents/annualreports/20142015.pdf

    Shane, A., Gheewala, S. H., Fungtammasan, B., Silalertruksa, T., Bonnet, S., & Phiri, S.
    (2016). Bioenergy resource assessment for Zambia. Renewable and Sustainable
    Energy Reviews, 53, 93-104.

    Shonhiwa, C. (2013). An assessment of biomass residue sustainably available for
    thermochemical conversion to energy in Zimbabwe. Biomass and Bioenergy, 52,
    131-138.

    Smeets, E. M., & Faaij, A. P. (2007). Bioenergy potentials from forestry in 2050. Climatic
    Change, 81(3-4), 353-390.

    SSA (Swaziland Sugar Association) (2015), “Performance Highlights”, Retrieved May
    2016 from the World Wide Web

    http://www.ssa.co.sz/images/SwazilandSugarAssociation2.pdf
    Tran G., 2016. Citrus fruits. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO.
    Retrieved May 2016 from the World Wide
    Web: http://www.feedipedia.org/node/678

    U.S Department of Energy “Estimating Appliance and Home Electronic Energy Use”
    Retrieved May 2016 from the World Wide Web
    http://energy.gov/energysaver/estimating-appliance-and-home-electronic-energy-
    use. Accessed January 2016

    Valk. M (2013). Availability and Cost of Agricultural Residues for Bioenergy Generation.
    International Literature Review and a Case Study for South Africa. MSc Thesis
    Utrecht University, Utrecht, Netherlands p. 126 Available from:
    http://dspace.library.uu.nl/handle/1874/296153

    Wicke, B., Smeets, E., Watson, H., & Faaij, A. (2011). The current bioenergy production
    potential of semi-arid and arid regions in sub-Saharan Africa. Biomass and
    Bioenergy, 35(7), 2773-2786.

    World Bank Database. Country Indicator: Electricity Transmission losses Retrieved April
    2016 from the World Wide Web
    http://data.worldbank.org/indicator/EG.ELC.LOSS.ZS?locations=ZA

    World Bank Database. Country Indicators Retrieved August 2015 from the World Wide
    Web http://www.worldbank.org/en/country/swaziland

    QR CODE
    :::