| 研究生: |
祁慕尚 Musenge Chikopa |
|---|---|
| 論文名稱: |
史瓦濟蘭於回收農業及林業殘料用以開發生質能源潛力研究 Bioenergy Potential of Agriculture and Forest Residues in Swaziland |
| 指導教授: |
廖萬里
Wan-Li, Liao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 國際永續發展碩士在職專班 International Environment Sustainable Development Program |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 農業殘料 、林業殘料 、理論能源潛力 、永續能源潛力 、殘料與產量比例 |
| 外文關鍵詞: | Forestry residue, Theoretical energy potential, Sustainable energy potential, Residue to product ration |
| 相關次數: | 點閱:26 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究評估於史瓦濟蘭將農業及林業之殘料回收,
用以開發生質能源的潛勢。史瓦濟蘭年產 4.408
公噸的農業與林業殘料,經由理論計算之能源潛力
是每年1015 焦耳 (60.67 petajoule/年,PJ/y);
於永續能源潛力 (sustainable energy potential)
方面估計,這些殘料可提供 52.3 PJ/y的能源,其中,
農業殘料貢獻 89.73%,而以甘蔗渣所占比例最高,
林業殘料為 10.27%。然而,這些頗具生質能潛力的殘料,
目前尚未為史瓦濟蘭應用現代科技予以充分利用及開發
成能源。對於此類農業與木業殘料轉換成生質能源的影響
因素,於本研究進行了討論。
This study assessed the energy potential of agriculture
and forestry residue for the sustainable generation of
power. The key to the methodology applied was to estimate
crop and forestry residue harvesting for bioenergy while
maintaining soil productivity and catering for competing
residue uses. The theoretical energy potential of Swaziland estimated in this study was 60.7 petajoule per year (PJ/y) in the amount 4.408 megaton (Mt) of agricultural and forestry residues. In the estimation of sustainable energy potential, these examined residues could offer 52.3 PJ/y.The energy potential contribution of agricultural and forestry residue was 89.73% and 10.27%, respectively. Sugar cane is the most offer in energy potential of agricultural residue. However, these amount of residues currently not yet being utilized to develop maximum energy potential with modern technology in this nation. A discussion is made in this study on the factors influencing the potential conversion routes.
African Development Bank “Swaziland Economy” (2014) Retrieved November 2015
from the World Wide Web: http://www.afdb.org/en/countries/southern-
africa/swaziland/swaziland-economic-outlook/
Andrews, S. S. (2006) Crop Residue Removal for Biomass Energy Production: Effects on
Soils and Recommendations. USDA White Paper. Retrieved June 2016, from the
World Wide Web:
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053255.pdf.
Batidzirai, B., Valk, M., Wicke, B., Junginger, M., Daioglou, V., Euler, W., & Faaij, A. P.
C. (2016). Current and future technical, economic and environmental feasibility of
maize and wheat residues supply for biomass energy application: Illustrated for
South Africa. Biomass and Bioenergy, 92, 106-129.
Chan, Y. (2008). Increasing soil organic carbon of agricultural land. Primefact, 735, 1-5.
Retrieved July 30 2016, from the World Wide Web: http://www.sdsoil.com/wp-
content/uploads/2014/11/Increasing-soil-organic-carbon.pdf
Cutz, L., Haro, P., Santana, D., & Johnsson, F. (2016). Assessment of biomass energy
sources and technologies: The case of Central America.Renewable and Sustainable
Energy Reviews, 58, 1411-1431.
Deepchand, K. (2005). Sugar cane bagasse energy cogeneration—lessons from Mauritius.
In parliamentarian forum on energy legislation and sustainable development, Cape
Town, South Africa (Vol. 10, p. 2005).
Evans, A., Strezov, V., & Evans, T. J. (2010). Sustainability considerations for electricity
generation from biomass. Renewable and Sustainable Energy Reviews, 14(5),
1419-1427.
F. Shafizadeh, Basic principles of direct combustion, in: S.S. Sofer, O.R. Zaborsky (Eds.),
Biomass Conversion Processes for Energy and Fuels, Plenum, New York, 1981,
pp. 103–124.
FAOSTAT (Food and Agricultural Organization Statistic Platform) (2015), “FAOSTAT
Domains, Forestry Production and Trade”, Retrieved March 2016 from the World
Wide Web: http://faostat3.fao.org/faostat-gateway/go/to/download/F/FO/E.
FAOSTAT (Food and Agricultural Organization Statistic Platform) Swaziland Crop
Productin (2015), Retrieved March 2016 from the World Wide Web: “FAOSTAT
Domains, Crop Production and Trade”, http://faostat3.fao.org/download/Q/QC/E,
Gonzalez-Salazar, M. A., Morini, M., Pinelli, M., Spina, P. R., Venturini, M., Finkenrath,
M., & Poganietz, W.-R. (2014). Methodology for estimating biomass energy
potential and its application to Colombia. Applied Energy, 136, 781-796.
Heuzé V., Tran G., Giger-Reverdin S., 2015. Pineapple by-products. Feedipedia, a
programme by NRA, CIRAD, AFZ and FAO Retrieved May 2016 from the
World Wide Web: http://www.feedipedia.org/node/676.
Hiloidhari, M., Das, D., & Baruah, D. (2014). Bioenergy potential from crop residue
biomass in India. Renewable and Sustainable Energy Reviews, 32, 504-512.
Hoogwijk, M., Faaij, A., Van Den Broek, R., Berndes, G., Gielen, D., & Turkenburg, W.
(2003). Exploration of the ranges of the global potential of biomass for energy.
Biomass and bioenergy, 25(2), 119-133.
IEA (2008), Combined Heat and Power: Evaluating the Benefits of Greater Global
Investment, IEA/OECD, and Paris Retrieved February 2016 from the World Wide
Web:
https://www.iea.org/publications/freepublications/publication/chp_report.pdf
IEA (International Energy Agency) (2014), “World Energy Outlook 2014”, Retrieved
October 2015 from the World Wide Web: www.iea.org/publications/
freepublications/publication/WEO2011_WEB.pdf
IRENA (International Renewable Energy Agency) (2012), “Renewable Energy
Technologies: Cost Analysis Series:” Retrieved June 2016 from the World Wide
Web:
https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost
_Analysis-BIOMASS.pdf
IRENA (International Renewable Energy Agency) (2014), “Swaziland Renewables
Readiness Assessment:” Retrieved June 2015 from the World Wide Web:
http://www.irena.org/DocumentDownloads/Publications/IRENA_RRA_Swazilan
d_2014.pdf.
Jenkins B.M. Ebeling J.M, Correlation of physical and chemical properties of terrestrial
biomass with conversion, Proceedings Energy from Biomass and Wastes IX,
Institute of Gas Technology, Chicago, IL, 1985.
Jenkins, B., Baxter, L. L., & Miles, T. R. (1998). Combustion properties of biomass. Fuel
processing technology, 54(1), 17-46.
Jenkins. B.M Properties of biomass, Biomass Energy Fundamentals, EPRI TR-102107,
Electric Power Research Institute, Palo Alto, CA, 1993.
Jingura, R. M., Musademba, D., & Kamusoko, R. (2013). A review of the state of biomass
energy technologies in Zimbabwe. Renewable and Sustainable Energy Reviews,
26, 652-659.
Jingura, R., & Matengaifa, R. (2008). The potential for energy production from crop
residues in Zimbabwe. Biomass and Bioenergy, 32(12), 1287-1292.
Leete, M., Damen, B., & Rossi, A. (2013). Swaziland. BEFS country brief. Retrieved
November 2015 from the World Wide Web:
http://www.fao.org/docrep/017/aq180e/aq180e.pdf.
Lynd, L., Von Blottnitz, H., Tait, B., De Boer, J., Pretorius, I., Rumbold, K., & Van Zyl,
W. (2003). Converting plant biomass to fuels and commodity chemicals in South
Africa: a third chapter? South African Journal of Science, 99.
McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass.
Bioresource technology, 83(1), 37-46.
McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies.
Bioresource technology, 83(1), 47-54.
Menne, Wally, and Ricardo Carrere. Swaziland, the Myth of Sustainable Timber
Plantations. World Rainforest Movement, 2007.
MNRE (2013) Ministry of Natural Resources and Energy “Household Energy Access
Study”. Retrieved June 2016 from the World Wide Web:
http://www.irena.org/DocumentDownloads/events/2015/Bioenergy%20Statistics
%20Presentations/Household%20energy%20surveys/Swaziland_household%20e
nergy%20access%20report.pdf.
Mohammed, Y., Mustafa, M., Bashir, N., Ogundola, M., & Umar, U. (2014). Sustainable
potential of bioenergy resources for distributed power generation development in
Nigeria. Renewable and Sustainable Energy Reviews, 34, 361-370.
Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil:
a critical review. Energy & fuels, 20(3), 848-889.
Okello, C., Pindozzi, S., Faugno, S., & Boccia, L. (2013). Bioenergy potential of
agricultural and forest residues in Uganda. Biomass and Bioenergy, 56, 515-525.
Papendick R.I, Moldenhauer. W.C (1995) “Crop Management to Reduce Soil Erosion and
Improve Soil Quality” USDA-Agricultural Research Service, Northwest.
Springfield (VA), p. 70 Conservation Report Number 40
Potgieter J.G (2011). Agricultural Residue as a Renewable Energy Resource – Utilisation
of Agricultural Residue in the Greater Gariep Agricultural Area as a Renewable
Energy Resource. MSc Thesis Stellenbosch University, Cape Town, South Africa
p. 85
REASWA “Renewable Energy in Swaziland Case Study Brochure” (2004) Retrieved
November 2015 from the World Wide Web:
http://www.gubaswaziland.org/files/documents/resource11.pdf
REN21 (2011), Renewables 2011: Global Status Report, REN21, and Paris. November
2015 from the World Wide Web
http://www.ren21.net/Portals/0/documents/Resources/GSR2011_FINAL.pdf
REN21 RENEWABLES (2015) GLOBAL STATUS REPORT. November 2015 from the
World Wide Web: http://www.ren21.net/wp-content/uploads/2015/07/REN12-
GSR2015_Onlinebook_low1.pdf
Scarlat, N., Blujdea, V., & Dallemand, J. F. (2011). Assessment of the availability of
agricultural and forest residues for bioenergy production in Romania. Biomass and
Bioenergy, 35(5), 1995-2005.
SE4ALL ‘Kingdom of Swaziland, Sustainable Energy for All Country Action Plan’ (2014)
Retrieved November 2015 from the World Wide Web:
http://www.se4all.org/sites/default/files/Swaziland_RAGA_EN_Released.pdf
SEC Swaziland Electricity Company 2014/2015 Annual Report Retrieved July 2016 from
the World Wide Web:
http://www.sec.co.sz/documents/annualreports/20142015.pdf
Shane, A., Gheewala, S. H., Fungtammasan, B., Silalertruksa, T., Bonnet, S., & Phiri, S.
(2016). Bioenergy resource assessment for Zambia. Renewable and Sustainable
Energy Reviews, 53, 93-104.
Shonhiwa, C. (2013). An assessment of biomass residue sustainably available for
thermochemical conversion to energy in Zimbabwe. Biomass and Bioenergy, 52,
131-138.
Smeets, E. M., & Faaij, A. P. (2007). Bioenergy potentials from forestry in 2050. Climatic
Change, 81(3-4), 353-390.
SSA (Swaziland Sugar Association) (2015), “Performance Highlights”, Retrieved May
2016 from the World Wide Web
http://www.ssa.co.sz/images/SwazilandSugarAssociation2.pdf
Tran G., 2016. Citrus fruits. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO.
Retrieved May 2016 from the World Wide
Web: http://www.feedipedia.org/node/678
U.S Department of Energy “Estimating Appliance and Home Electronic Energy Use”
Retrieved May 2016 from the World Wide Web
http://energy.gov/energysaver/estimating-appliance-and-home-electronic-energy-
use. Accessed January 2016
Valk. M (2013). Availability and Cost of Agricultural Residues for Bioenergy Generation.
International Literature Review and a Case Study for South Africa. MSc Thesis
Utrecht University, Utrecht, Netherlands p. 126 Available from:
http://dspace.library.uu.nl/handle/1874/296153
Wicke, B., Smeets, E., Watson, H., & Faaij, A. (2011). The current bioenergy production
potential of semi-arid and arid regions in sub-Saharan Africa. Biomass and
Bioenergy, 35(7), 2773-2786.
World Bank Database. Country Indicator: Electricity Transmission losses Retrieved April
2016 from the World Wide Web
http://data.worldbank.org/indicator/EG.ELC.LOSS.ZS?locations=ZA
World Bank Database. Country Indicators Retrieved August 2015 from the World Wide
Web http://www.worldbank.org/en/country/swaziland