跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張方瑋
Fang-Wei Chang
論文名稱: 高性能旋轉式電阻抗斷層攝影系統
A high-performance rotary Electrical Impedance Tomography system
指導教授: 鍾鴻源
Hung-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 71
中文關鍵詞: 旋轉式電阻抗斷層攝影移動式電極阻抗影像
外文關鍵詞: impedance image, Rotary Electrical Impedance Tomography (REIT), moving electrodes
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    電阻抗斷層攝影系統(Electrical impedance tomography, EIT)為一種應用於量測物體或人體組織橫切面阻抗變化的儀器,但重建出的影像由於受到解析度的限制,使得阻抗影像系統無法廣泛的被應用在臨床診斷上,為了能突破以往因量測資料量不足而影響解析度的問題,本論文提出旋轉式EIT系統,利用步進馬達的帶動旋轉,可使量測位置增加,因而提升量測系統的資料量,此外論文內也針對電極組態特別設計,系統內採用一複合式的電極,分別包含了電流電極與電壓電極,此一分離電極的設計可以進一步的提升系統的精確度與穩定度,藉由論文內所提出的改善方法,使EIT系統能夠達到更高的性能。
    為了要確保系統的穩定度,在實驗前先對電極的效能進行評估與電流源及多工器通道測試,實驗中各別以量測到的208筆資料與1040筆資料重建影像做比較,由實驗的結果看出重建的影像若採用較多筆的資料數則可使影像解析度提高,重建的影像則可清楚的看出實際待測物的所在位置與大小。
    雖然本論文提出旋轉式EIT系統可使得重建影像解析度提升,但目前仍於假體內實驗,因此未來期望系統的改良,可實際應用於人體組織量測上。


    A high-performance rotary Electrical Impedance Tomography system
    Abstract
    Electrical Impedance Tomography (EIT) system is an instrumentation which measures the cross-section of material or tissues. It can not extensively apply to clinical diagnosis because the reconstructed image has poor resolution. In order to overcome the resolution limitation causing by lack of measurements, the rotary Electrical Impedance Tomography (REIT) is proposed to increase the efficiency of electrodes. The system equipped a stepping motor to drive movable electrodes. By increasing the number of measuring sites, this system can acquire more measurement data. Therefore, the image resolution can be improved further. The paper is also including the design of electrode. The configuration of electrode is a compound electrode that including current electrodes and voltage electrodes. It can make that the system perform better precision and stability. These improvements can help EIT system to achieve higher performance.
    To ensure reliability of the REIT system, all of the subsystem, such as electrodes, current source and multiplexer are well tested. In the experiment, we reconstructed the impedance image coming from 208 measurements and 1040 measurements respectively. From the results, we observe that the image with more measurement data has better resolution. By increasing the resolution of the image, the reconstructed image can show actual object in position and size.
    The proposed rotary EIT system can promote resolution of reconstruction image, but this system only tested on the phantom. Therefore we hope that the system is improved in the future, it can practically apply to biologic tissue.

    目 錄 頁次 中文摘要 英文摘要 目錄 I 圖目錄 III 表目錄 VI 第一章 緒論 1.1前言 1 1.2 文獻回顧 3 1.3 生物組織之電特性 5 1.4 研究動機及目的 8 1.5 論文架構 8 第二章 系統組成架構 2.1 EIT系統設計原理 10 2.2 定電流源 13 2.3 緩衝器與遮罩式(shield)絞線 15 2.4 儀表放大器 16 2.5多工器通道 18 2.6 訊號解調 19 2.6.1 同步解調 19 2.6.2 鎖頻(Lock-in)解調 20 2.6.3 數位解調 22 第三章 系統之電極設計 3.1 電極型態 24 3.2 電極材料 26 3.3 四電極量測法 27 3.4 減速機型步進馬達 28 3.5 假體結構 32 3.6 資料收集方法 33 3.7 電極誤差評估 35 第四章 影像重建與實驗結果 4.1 人機操作介面與資料擷取卡 39 4.1.1 人機操作介面 39 4.1.2 資料擷取卡 41 4.2 影像重建 42 4.3 系統測試 44 4.3.1定電流源測試 45 4.3.2 多工器通道測試 47 4.4 實驗結果 48 第五章 結論與未來展望 5.1 結論 62 5.2 未來展望 63 參考文獻 64 論文著作 71

    參考文獻
    [1] A. J. Fitzgerald, D. S. Holder, L. Eadie, C. Hare, and R. H. Bayford, "A comparison of techniques to optimize measurement of voltage changes in electrical impedance tomography by minimizing phase shift errors," Medical Imaging, IEEE Transactions on, vol. 21, no. 6, pp. 668-675, 2002.
    [2] H. S. Tapp and R. H. Wilson, "Developments in low-cost electrical imaging techniques," Process Control and Quality, vol. 9, no. 1-3, pp. 7-16, 1997.
    [3] T. E. Kerner, K. D. Paulsen, A. Hartov, S. K. Soho, and S. P. Poplack, "Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects," Medical Imaging, IEEE Transactions on, vol. 21, no. 6, pp. 638-645, 2002.
    [4] V. A. Cherepenin, A. Y. Karpov, A. V. Korjenevsky, V. N. Kornienko, Y. S. Kultiasov, M. B. Ochapkin, O. V. Trochanova, and J. D. Meister, "Three-dimensional EIT imaging of breast tissues: system design and clinical testing," Medical Imaging, IEEE Transactions on, vol. 21, no. 6, pp. 662-667, 2002.
    [5] B. M. Eyuboglu, A. F. Oner, U. Baysal, C. Biber, A. I. Keyf, U. Yilmaz, and Y. Erdogan, "Application of electrical impedance tomography in diagnosis of emphysema-a clinical study," Physiological Measurement, vol. 16, no. 3A, p. A191, 1995.
    [6] J. H. Campbell, N. D. Harris, F. Zhang, B. H. Brown, and A. H. Morice, "Clinical applications of electrical impedance tomography in the monitoring of changes in intrathoracic fluid volumes," Physiological Measurement, vol. 15, no. 2A, p. A217, 1994.
    [7] Inez Frerichs, "Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities," Physiological Measurement, vol. 21, no. 2, p. R1, 2000.
    [8] V. Cherepenin, A. Karpov, A. Korjenevsky, V. Kornienko, K. Yu, A. Mazaletskaya, and D. Mazourov, "Preliminary static EIT images of the thorax in health and disease," Physiological Measurement, vol. 23, no. 1, p. 33, 2002.
    [9] J. H. Li, C. Joppek, and U. Faust, "Fast EIT data acquisition system with active electrodes and its application to cardiac imaging," Physiological Measurement, vol. 17, no. 4A, p. A25, 1996.
    [10] R. H. Smallwood, A. R. Hampshire, B. H. Brown, R. A. Primhak, S. Marven, and P. Nopp, "A comparison of neonatal and adult lung impedances derived from EIT images," Physiological Measurement, vol. 20, no. 4, p. 401, 1999.
    [11] B. H. Brown and D. C. Barber, "Electrical impedance tomography; the construction and application to physiological measurement of electrical impedance images," Med Prog Technol, vol. 13, no. 2, pp. 69-75, Jan.1987.
    [12] I. Frerichs, J. Hinz, P. Herrmann, G. Weisser, G. Hahn, M. Quintel, and G. Hellige, "Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging," Medical Imaging, IEEE Transactions on, vol. 21, no. 6, pp. 646-652, 2002.
    [13] R. A. Erol, R. H. Smallwood, B. H. Brown, P. Cherian, and K. D. Bardhan, "Detecting oesophageal-related changes using electrical impedance tomography," Physiological Measurement, vol. 16, no. 3A, p. A143, 1995.
    [14] I. Jurgens, rgens, J. Rosell, and P. J. Riu, "Electrical impedance tomography of the eye: in vitro measurements of the cornea and the lens," Physiological Measurement, vol. 17, no. 4A, p. A187, 1996.
    [15] I. David, M. Jennifer, and S. Samuli, "Biomedical Applications of Electrical Impedance Tomography," Physiological Measurement, vol. 24, no. 2 2003.
    [16] D. Holder, "Electrical impedance tomography of brain function: its potential advantages for imaging epileptic activity," 1998, pp. 7-1-7/5.
    [17] A. T. Tidswell, A. Gibson, R. H. Bayford, and D. S. Holder, "Electrical impedance tomography of human brain activity with a two-dimensional ring of scalp electrodes," Physiological Measurement, vol. 22, no. 1, p. 167, 2001.
    [18] R. J. Yerworth, R. H. Bayford, G. Cusick, M. Conway, and D. S. Holder, "Design and performance of the UCLH Mark 1b 64 channel electrical impedance tomography (EIT) system, optimized for imaging brain function," Physiological Measurement, vol. 23, no. 1, p. 149, 2002.
    [19] H. Zhiyao, W. Baoliang, and L. Haiqing, "Application of electrical capacitance tomography to the void fraction measurement of two-phase flow," Instrumentation and Measurement, IEEE Transactions on, vol. 52, no. 1, pp. 7-12, 2003.
    [20] F. Dickin and M. Wang, "Electrical resistance tomography for process applications," Measurement Science and Technology, vol. 7, pp. 247-260, 1996.
    [21] Z. Szczepanik and Z. Rucki, "Frequency analysis of electrical impedance tomography system," Instrumentation and Measurement, IEEE Transactions on, vol. 49, no. 4, pp. 844-851, 2000.
    [22] B. H. Brown, "Electrical impedance tomography (EIT) : a review," Medical Engineering & Technology, vol. 27, no. 3, pp. 97-108, 2003.
    [23] R. P. Henderson and J. G. Webster, "An impedance camera for spatially specific measurements of the throax," Biomedical Engineering, IEEE Transactions on, vol. 25, no. 3, pp. 250-254, 1978.
    [24] D. C. Barber, B. H. Brown, and I. L. Freeston, "Imaging spatial distributions of resistivity using applied potential tomography," Electronics Letters, vol. 19, no. 22, pp. 933-935, 1983.
    [25] B. H. Brown and A. D. Seagar, "The Sheffield data collection system," Clinical Physics and Physiological Measurement, vol. 8, no. 4A, p. 91, 1987.
    [26] A. Michel, L. Orah, M. Dov, M. David, N. Udi, N. Ron, and S. Abraham, "The T-SCAN technology: electrical impedance as a diagnostic tool for breast cancer detection," Physiological Measurement, vol. 22, no. 1, p. 1, 2001.
    [27] Y. F. Mangnall, C. Barnish, B. H. Brown, D. C. Barber, and A. G. Johnson, "Applied potential tomography: a new technique for assessing gastric function," Clinical Physics and Physiological Measurement, vol. 8, pp. 131-140, 1987.
    [28] G. L. Lamont, J. W. Wright, D. F. Evans, and L. A. Kapila, "An evaluation of applied potential tomography in the diagnosis of infantile hypertrophic pyloric stenosis.," Clinical Physics and Physiological Measurement, vol. 9A, pp. 65-69, 1988.
    [29] T. J. Noble, A. H. Morice, K. S. Channer, P. Milnes, N. D. Harris, and B. H. Brown, "Monitoring patients with left ventricular failure by electrical impedance tomography," European Journal of Heart Failure, vol. 1, no. 4, pp. 379-384, 1999.
    [30] R. J. Yerworth, R. H. Bayford, B. Brown, P. Milnes, M. Conway, and D. S. Holder, "Electrical impedance tomography spectroscopy (EITS) for human head imaging," Physiological Measurement, vol. 24, no. 2, p. 477, 2003.
    [31] G. Simonetti, E. Cossu, M. Montanaro, C. Caschili, and V. Giuliani, "What''s new in mammography," European Journal of Radiol, vol. 27, p. S234-S41, 1998.
    [32] Y. Zou and Z. Guo, "A review of electrical impedance techniques for breast cancer detection," Medical Engineering and Physics, vol. 25, no. 2, pp. 79-90, 2003.
    [33] A. J. Surowiec, S. S. Stuchly, J. B. Barr, and A. Swarup, "A dielectric properties of breast carcinoma and the surrounding tissue," Biomedical Engineering, IEEE Transactions on, vol. 35, pp. 257-263, 1988.
    [34] K. R. Foster and H. P. Schwan, "Dielectric properties of tissues and biological materials-a critical review.," Critical Reviews in Biomedical Engineering, vol. 17, pp. 25-104, 1989.
    [35] S. Grimnes and O. G. MARTINSEN, "Electrical properties of tissue," in Bioimpedance and bioelectricity basics 2000, pp. 87-126.
    [36] E. Gersing, "Monitoring temperature induced changes in tissue during hyperthermia by impedance methods.," Annals of the New York Academy of Science, vol. 83, pp. 13-20, 1999.
    [37] S. Gabriel, R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: measurements in the frequency range 10Hz to20GHz," Physics in Medicine and Biology, vol. 41, pp. 2251-2269, 1996.
    [38] D. S. Holder, Electrical Impedance Tomography-Methods, History and Applications 2005.
    [39] D. M. Jones, R. H. Smallwood, D. R. Hose, and B. H. Brown, "Constraints on tetrapolar tissue impedance measurements," Electronics Letters, vol. 37, no. 25, pp. 1515-1517, 2001.
    [40] L. M. Heikkinen, M. Vauhkonen, T. Savolainen, and J. P. Kaipio, "Modelling of internal structures and electrodes in electrical process tomography," Measurement Science and Technology, vol. 12, no. 8, p. 1012, 2001.
    [41] K. G. Boone and D. S. Holder, "Current approaches to analogue instrumentation design in electrical impedance tomography," Physiological Measurement, vol. 17, no. 4, p. 229, 1996.
    [42] Alexander S Ross, G J Saulnier, and J C Newell1 and D Isaacson, "Current source design for electrical impedance tomography," Physiological Measurement, no. 2, pp. 509-516, 2003.
    [43] M. Min, O. Martens, and T. Parve, "Lock-in measurement of bio-impedance variations," Measurement, vol. 27, no. 1, pp. 21-28, 2000.
    [44] E. Gersing and M. Osypka, "EIT using magnitude and phase in an extended frequency range," Physiological Measurement, vol. 15, no. 2A, p. A21, 1994.
    [45] L. Angrisani and L. Ferrigno, "Reducing the uncertainty in real-time impedance measurements," Measurement, vol. 30, no. 4, pp. 307-315, 2001.
    [46] R. W. M. Smith, I. L. Freeston, and B. H. Brown, "Digital demodulator for electrical impedance imaging," 1989, pp. 1744-1745.
    [47] D. S. Holder, Y. Hanquan, and A. Rao, "Some practical biological phantoms for calibrating multifrequency electrical impedance tomography," Physiological Measurement, vol. 17, no. 4A, p. A167, 1996.
    [48] Z. Moron, Z. Rucki, and Z. Szczepanik, "Possibilities of employing a calculable four-electrode conductance cell to substitute the secondary standards of electrolytic conductivity.," Instrumentation and Measurement, IEEE Transactions on, vol. 46, pp. 1268-1273, Dec.19970.
    [49] P. C. Shih, "Design of the Movable Electrical Impedance Tomography system." 2005.
    [50] B. H. Brown, D. C. Barber, and L. Tarrasenko, "Electrical Impedance Tomography - Applied Potential Tomography (Preface)," Clinical Physics and Physiological Measurement, vol. 8, no. 4A, p. 3, 1987.
    [51] B. H. Brown, D. C. Barber, and J. Jossinet, "Electrical Impedance Tomography - Applied Potential Tomography," Clinical Physics and Physiological Measurement, vol. 9, no. 4A, p. 3, 1988.
    [52] P. Nick and R. B. L. William, "A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project," Measurement Science and Technology, vol. 13, no. 12, p. 1871, 2002.

    QR CODE
    :::