跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳冠君
Kuan-Chun Chen
論文名稱: 整合EPnP及導引器械之C-arm影像輔助脊椎手術用導引系統
指導教授: 曾清秀
Ching-Shiow Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 82
中文關鍵詞: C-arm影像手術導引脊椎手術高效率透視N點攝影機姿態估計
外文關鍵詞: C-arm image, surgical navigation, spine surgery, EPnP
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 椎莖螺釘手術具有高危險性,手術中醫師不斷藉由拍攝C-arm X光影像以避免失誤,然高輻射劑量危害到病患以及醫護人員的健康,且徒手進行手術很仰賴醫師的經驗及手感,經驗不足的醫師其成功率相對的低很多。影像輔助脊椎手術導引系統可協助解決鑽孔定位的問題,但已知的市售導航系統都配備光學式定位裝置,價格昂貴使得導航系統不易普及化,因此發展一成本低兼具鑽孔導引支撐功能的脊椎手術用導引系統是有其重要性。
    本研究以實驗室既有的C-arm影像輔助椎莖螺釘植入手術用的導引系統為基礎,以 高效率透視N點攝影機姿態估計方法(EPnP)取代光學式定位器的定位功能,結合特徵樣板上的特徵點影像辨識及影像中心計算,求得AP及LA方向C-arm影像與特徵樣板的座標轉換關係,並於AP及LA影像上規劃椎莖的鑽孔進入點與結束點,再利用雙角度攝影空間定位技術計算出鑽孔路徑的空間方向,將該鑽孔路徑方位轉換至導引輔具座標系上,並調整導引輔具上的鑽孔導槽方向與鑽孔路徑重合,醫師即可依循該導槽進行椎莖鑽孔手術。可跨接在手術台兩側的鑽孔導引輔具具有四自由度,兩個平移自由度用以定位鑽孔導槽位置,另兩個旋轉自由度則定位鑽孔導槽方向。
    實驗以一含雙尖點的器械模擬鑽孔路徑,該兩尖點分別用來模擬鑽孔進入點以及結束點的真實空間位置。幾次實驗結果顯示進入點的位置誤差為2.92±0.76mm,結束點的位置誤差為3.41±0.99mm,方向誤差為0.73±0.33度。


    Pedicle screw insertion is a high risk operation. Also free-hand operation is highly relied on surgeon’s clinic experience and hand feeling. The operation success rate is relatively lower for inexperienced surgeons. Image assisted surgical navigation system for spine surgery can provide position assistance of drilling. Commercially available navigation systems are equipped with an optical tracker. The high price of the navigation system makes it not easy to popularize. Therefore, development of a low cost navigation system with drill guide device for spine surgery is highly recommended.
    This study is based on C-arm image assisted surgical navigation system for pedicle screw insertion developed in our laboratory. Efficient perspective-n-point camera pose estimation (EPnP) method is applied to replace the optical tracker to estimate 3D pose of the featuring phantom. The transformation matrix between the AP/LA view C-arm image frames and featuring phantom frame can be determined by EPnP method with feature point image recognition and image center position calculation. Then the drill path defined by the entry point and end point selected on both AP and LA images can be determined by bi-plane method. By adjusting the guide slot of drill guide device to be coaxial with the planned drill path, then the surgeon can safely drill the pedicle just by following the guide slot. The four- degree-of-freedom drill guide device can be mounted on both sides of the operating table. Two translational degrees of freedom are for positioning the center of the guiding slot while the other two rotational degrees of freedom are for positioning the direction of the guide slot.
    In the experiment, a device with two cusps is used to simulate the drilling path. The two cusps are used to simulate the entry point and end point of drilling path. Several experimental results show that the position errors of the entry and end points are 2.92±0.76mm and 3.41±0.99mm respectively, and the direction error is 0.73±0.33°.

    摘要 I Abstract II 目錄 III 表目錄 V 圖目錄 VI 第1章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-3 研究方法簡介 6 第2章 研究方法 8 2-1 座標系統與座標系統間之轉換關係 8 2-2 C-arm系統 9 2-2-1 成像原理 9 2-2-2 影像畸變 10 2-2-3 影像畸變校正 10 2-2-4 C-arm投影中心與C-arm有X光理想發射源 12 2-2-5 攝影機座標系定義 12 2-3 C-arm影像輔助手術導引系統 13 2-3-1 影像輔助手術導引系統概述 13 2-3-2 植入椎莖螺釘之C-arm影像輔助手術導引系統 14 2-4 攝影機姿態估計 18 2-4-1 單點透視投影模型 18 2-4-2 C-arm攝影機投影模型 20 2-4-3 攝影機姿態估計演算法 21 2-4-4 特徵樣板設計 25 2-4-5 標記與標記物影像的對應關係 27 2-4-6 多角度攝影空間定位技術 28 2-5 研究方法總結 32 第3章 實驗結果與討論 33 3-1 攝影機姿態估計演算法評估實驗 33 3-1-1 驗證方法 33 3-1-2 EPnP演算法誤差評估實驗 35 3-2 影像校正器評估實驗 40 3-3 特徵樣板與導引輔具設計 49 3-3-1 特徵樣板設計 49 3-3-2 導引輔具設計 50 3-4 整體導引系統精度驗證實驗 52 第4章 結論與未來展望 66 參考文獻 68

    [1] T. Hüfner, D. Kendoff, M. Citak, et al., “Precision in orthopaedic computer navigation”, Der Orthopäde, Vol. 35, pp. 1043-1055, 2006.
    [2] D. Kendoff, M. Citak, T. Hüfner, et al., “Current concepts and applications of computer navigation in orthopedic trauma surgery”, Central European Journal of Medicine, Vol. 2, pp. 392-403, 2007.
    [3] R. J. Mobbs, P. Sivabalan, J. Li, “Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies”, Journal of Clinical Neuroscience., Vol. 19, pp. 829-835, 2012
    [4] A. Nowitzke, M. Wood, K. Cooney, “Improving accuracy and reducing errors in spinal surgery-a new technique for thoracolumbar-level localization using computer–assisted image guidance”, The Spine Journal, Vol. 8, pp. 597–604, 2008.
    [5] Y. R. Rampersaud, K. T. Foley, A. C. Shen, et al., “Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion”, Spine, Vol. 25, pp. 2637-2645, 2000.
    [6] J. C. Eyke, J. E. Ricciardi, W. Roesch, et al., “Computer-assisted virtual fluoroscopy”, University of Pennsylvania Orthopaedic Journal, Vol. 15, pp. 53–59, 2002.
    [7] K. D. Kim, J. P. Johnson, J. D. Babbitz, “Image-guided thoracic pedicle screw placement:a technical study in cadavers and preliminary clinical experience”, Neurosurgical Focus, Vol. 10, pp. 1-5, 2001.
    [8] I. D. Gelalis, N. K. Paschos, E. E. Pakos, et al., “Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques”, European Spine Journal, Vol. 21, pp.247–255, 2011.
    [9] Y. Liu, W. Tian, B. Liu, et al., “Comparison of the clinical accuracy of cervical (C2–C7) pedicle screw insertion assisted by fluoroscopy, computed tomography- based navigation, and intraoperative three-dimensional C-arm navigation”, Chinese Medical Journal, Vol. 123, pp. 2995-2998, 2010.
    [10] B. J. Shin, A. R. James, I. U. Njoku, et al., “Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion”, Journal of Neurosurgery: Spine, Vol. 17, pp. 113-122, 2012.
    [11] T. T. Kim, D. Drazin, F. Shweikeh, et al., “Clinical and radiographic outcomes of minimally invasive percutaneous pedicle screw placement with intraoperative CT (O-arm) image guidance navigation”, Neurosurgical Focus, Vol. 36, pp. E1, 2014.
    [12] P. Barsa, P. Suchomel, “Portable CT scanner-based navigation in lumbar pedicle screw insertion”, European Spine Journal, Vol. 22, pp. 1446–1450, 2013.
    [13] https://www.brainlab.com/
    [14] http://www.medtronic.com/
    [15] http://www.surgicalproductsmag.com/company-profiles/orthosoft-holdings-inc
    [16] R. Fahrig, M. Moreau, D. W. Holdsworth, “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII:correction of image intensifier distortion”, Medical Physics, Vol. 24, pp. 1097-1106, 1997.
    [17] 吳吉春,「基於C-arm影像的手術導引定位」,國立中央大學機械工程學系,2012碩士論文。
    [18] D. F. DeMenthon, L. S. Davis, “Model-based object pose in 25 lines of code”, International Journal of Computer Vision, Vol. 15, pp. 123-141, 1995.
    [19] D. Oberkampf, D. F. DeMenthon, L. S. Davis, “Iterative pose estimation using coplanar feature points”, Computer Vision and Image Understanding, Vol. 63, pp. 495-511, 1996.
    [20] A. Ansar, K. Daniilidis, “Linear Pose Estimation from Points or Lines”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, pp. 578-589, 2003.
    [21] Y. I. Abdel-Aziz, H. M. Karara, “Direct linear transformation from comparastor coordinates into object space coordinates in close-range photogrammetry”, In Proc. ASP/UI, close-range photogrammetry, pp. 1-18, 1971.
    [22] H. Hatze, “High-precision three-dimensional photogrammetric calibration and object space reconstruction using a modified DLT-approach”, Journal of Biomechanics, Vol. 21, pp. 533-538, 1988.
    [23] F. Gazzani, “Comparative assessment of two algorithms for calibrating stereophotogrammetric systems”, Journal of Biomechanics, Vol. 26, pp. 1449-1454, 1993.
    [24] V. Lepetit, F. Moreno-Noguer, P. Fua, “EPnP: An accurate O(n) solution to the PnP problem”, International Journal of Computer Vision, Vol. 81, pp. 155-166, 2009.
    [25] D. Grest, T. Petersen, V. Krüger, “A comparison of iterative 2D-3D pose estimation methods for real-time applications”, Image Analysis, Vol. 5575, pp. 706-715, 2009.
    [26] 陳佩君,「應用C-arm影像輔助手術導引系統於骨髓內釘遠端固定」,國立中央大學機械工程學系,2013碩士論文。
    [27] J. Wang, T. J. Blackburn, “The AAPM/RSNA Physics Tutorial for Residents X-ray Image Intensifiers for Fluoroscopy”, Radio Graphics, Vol. 20, pp. 1471-1477, 2000.
    [28] 謝仁懋,「C-arm影像導引系統於臨床椎弓螺釘植入之應用與改良」,國立中央大學機械工程學系,2012碩士論文。
    [29] W. J. Wolfe, D. Mathis, C. W. Sklair, et al., “The Perspective View of Three Points”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, pp. 66-73, 1991.

    QR CODE
    :::