| 研究生: |
蔡心蘭 Hsin-Lan Tsai |
|---|---|
| 論文名稱: |
台灣各子集水區之降雨與誘發山崩率之關係 The relationship between rainfall and the occurrence rate of induced landslides for sub-catchments in Taiwan |
| 指導教授: |
李錫堤
Chyi-Tyi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 降雨誘發山崩 、崩壞比 、降雨門檻值 |
| 外文關鍵詞: | rainfall-induced landslides, landslide ratio, rainfall threshold |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以前人降雨誘發山崩率之研究為基礎,於台灣各個流域內以水利署所劃分之子集水區為選取研究區之基準,分析降雨誘發山崩發生率與雨量因子之間的關係,探討崩壞比是否隨著雨量值改變呈某一趨勢之變化,並求得誘發山崩之降雨門檻值。
各子集水區內之總雨量與崩壞比進行線性一次迴歸顯示,各研究區R2值結果良好,隨著雨量增加崩壞比亦增加,而有正相關性之物理意義。在進一步進行二次迴歸時,發現當有極端高降雨事件時,大部分子集水區之二次迴歸R2值結果優於一次迴歸者,顯示了二次迴歸較適用於解釋極端降雨事件。
迴歸曲線於橫軸截距定義為降雨門檻值。線性一次迴歸及二次迴歸結果發現,二次迴歸之降雨門檻值較一次迴歸低很多。這可能是由於雨量事件分布不平均及資料點不足之故,但此結果仍可用於降雨門檻值之訂定之參考,可推估門檻值位於一次迴歸及二次迴歸兩門檻值之區間。
Based on previous rainfall-induced landslide studies, this research analyzed the relationship between the occurrence rate of rainfall-induced landslides and a rainfall factor for several sub-catchments in Taiwan. To investigate how the landslide occurrence rate increases with rainfall depth, and whether there is a rainfall threshold for landslides.
In each sub-catchment, first-order linear regression analysis indicates that evet total rainfall and the landslide ratio shows good relation with high value of R2. The landslide ratio increases linearly with rainfall after a certain threshold value. In the further quadratic regression, it shows that the performance is also good and the R2 value is high, when an extreme high rainfall event is involved. This means that the landslide occurrence rate has increased in an extreme rainfall event and a quadratic form would be more valid in describing it.
The intercept of the regression line at the horizontal axis is defined as a rainfall threshold for landsliding. The threshold value is commonly larger after the linear regression than that after the quadratic regression. This is due to the concave nature of the quadratic regression line and lack of data near the intercept. If we have added more data near the intercept, the distance of two intercepts may become closer. This indicates that an idea threshold may locate between the threshold after linear regression and the threshold after quadratic regression.
何春蓀(1986)臺灣地質概論-臺灣地質圖說明書,經濟部中央地質調查所,共163頁。
林美聆、陳天健、林鴻州、游文輝(2003)台北市崩塌警戒模式訂定方法之研究,中華水土保持學報,第34卷,第4期,第389-399頁。
邱奕勛(2012)降雨量與誘發山崩發生率之關係,國立中央大學應用地質研究所碩士論文,共210頁。
張柏毅(2013)台灣山區之降雨誘發山崩及山坡復育情形,國立中央大學應用地質研究所碩士論文,共377頁。
陳盈靜(2014)台灣山區降雨量與誘發山崩率之關係及集集大地震後山坡復育情形,國立中央大學應用地質研究所碩士論文,共193頁。
簡逢助(2015)山崩潛感值暨降雨量與崩壞比之關係探討,國立中央大學應用地質研究所碩士論文,共163頁。
李錫堤, 潘國樑, 林銘郎 (2005) 山崩潛感分析之研究(3/3)九十四年度成果報告, 經濟部中央地質調查所, 共268頁。
經濟部中央地質調查所(2008a)易淹水地區上游集水區地質調查與資料庫建置(第1期96年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫,經濟部中央地質調查所,共208頁。
經濟部中央地質調查所(2008b)易淹水地區上游集水區地質調查與資料庫建置(第2期97年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫(1/3),經濟部中央地質調查所,共579頁。
經濟部中央地質調查所(2009)易淹水地區上游集水區地質調查及資料庫建置(第2期98年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫(2/3),經濟部中央地質調查所,共594頁。
經濟部中央地質調查所(2010)易淹水地區上游集水區地質調查及資料庫建置(第2期99年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫(3/3),經濟部中央地質調查所,共365頁。
經濟部中央地質調查所(2011)易淹水地區上游集水區地質調查及資料庫建置(第3期100年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫(1/3),經濟部中央地質調查所,共483頁。
經濟部中央地質調查所(2012)易淹水地區上游集水區地質調查及資料庫建置(第3期101年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫(2/3),經濟部中央地質調查所,共472頁。
經濟部水利署水利規劃試驗所(2013)曾文溪流域因應氣候變遷防洪及土砂研究計畫,經濟部水利署水利規劃試驗所,共468頁。
趙衛君(2005)應用高斯過程建立分階式山區道路邊坡崩塌預測模式之研 究-以阿里山公路為例,國立台灣科技大學營建工程研究所碩士論文,共151頁。
陳亦君(2004)颱風降雨對海岸山脈北段公路邊坡崩塌影響之研究,國立東華大學自然資源管理研究所,共79頁。
譚志豪、陳嬑璇、冀樹勇(2009)以定率法評估集水區山崩臨界雨量,中興工程季刊,第105期,第5-16頁。’
打荻珠男 (1971) ひと雨による山腹崩壊について,新砂防,通巻79 号。
井上公夫(1995)關東地震と土砂災害,砂防と治水,第104號,第14-20頁。
井上公夫(2000)地震による土砂移動の予測,地震砂防,第102-120頁。
Aleotti, P. (2004) A warning system for rainfall-induced shallow failure, Engineering Geology, 73, 47-65.
Basistha, A., Arya, D. S., Goel, N. K. (2008) Spatial distribution of rainfall in Indian Himalayas - A Case Study of Uttarakhand Region, Water Resources Management, 22, 1325-1346.
Brand, E. W., Premchitt, J., Phillipson, H. B. (1984) Relationship between rainfall and landslides in Hong Kong, In Proceedings of the 4th International Symposium on Landslides, Toronto, Ont. BiTech Publishers, Vancouver, B.C., 1, 377–384.
Caine, N. (1980) The rainfall intensity-duration control of shallow landslides and debris flows, Geografiska Annaler, 62A, 1/2, 23-27.
Campbell, R H. (1975) Sod slips, debns flows and ram- storms m the Santa Momca mountains and vicinity, southern California U.S. Geological Survry Professional Paper, 851, 48 .
Cannon, S. H., Ellen, S. D. (1985) Rainfall conditions for abundant debris avalanches San Francisco Bay region, California, California Geology, 38, 12, 267-272.
Definiens Imaging (2004) eCognition user guide 4, Germany, 486p.
Finlay, P. F., Fell, R., Maguire, P. K. (1997) The relationship between the probability of landslide occurrence and rainfall. Canadian Geotechnical Journal, 1997, 34(6): 811-824.
Govi, M., Mortara, G., Sorzara, P.F. (1985) Eventi idrologici e frane, Geological Apply Idrogeology, XX (II), 359-375.
Guzzetti, F., Tonelli, G. (2004) Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards, Natural Hazards and Earth System Science, 4(2), 213-232.
Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C. P. (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update, Landslides, 5, 3-17.
Guzzetti, F., Ardizzone , F., Cardinali, M., Rossi, M., Valigi, D. (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy, Earth and Planetary Science Letters, 279, 222–229.
Ghosh, S., van Westen, C. J., Carranza, E. J. M., Jetten, V., Cardinali, M., Rossi, M., Guzzetti, F. (2012) Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities, Engineering Geology, 128, 49-62.
Jibson, R. W., Harp, E. L., Michael, F. A. (2000) A method for producing digital probabilistic seismic landslide hazard maps, Engineering Geology, 58, 271–289.
Larsen, M.C., Simon, A. (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico, Geografiska Annaler, 75A, 1-2, 13-23.
Lin, C.W., Chang, W.S., Liu, S.H., Tsai, T.T., Lee, S.P., Tsang, Y.C., Shieh, C.L., Tseng, C.M. (2011) Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan, Engineering Geology, 123, 3–12.
Liu, S. H., Lin, C. W., Tseng, C. M. (2013) A statistical model for the impact of the 1999 Chi-Chi earthquake on the subsequent rainfall-induced landslides, Engineering Geology, 156,11-19.
Montgomery, D. R, Dietrich, W. E. (1994) A physical based model for the topographic control on shallow landslides, Water Resources Agency, 30, 1153–1171.
Shou, K. J., Hong, C. Y., Wu, C. C., Hsu, H. Y., Fei, L. Y., Lee, J. F., Wei, C. Y. (2011) Spatial and temporal analysis of Landslides in Central Taiwan after 1999 Chi-Chi Earthquake, Engineering Geology, 123,122-128 .
Tseng, D. C., Chang, C. H. (1994) Color segmentation using UCS perceptual attributes, Proceedings of the National Science Council, Part A: Physical Science and Engineering, 18 (3), 305-314.
Wieczorek, G. F. (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. In Debris Flows/Avalanches: Process, Recognition, and Mitigation, Costa FE, Wieczorek GF (eds), Reviews in Engineering Geology, Geological Society of America, 93-104.