跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林冠維
Kuan-wei Lin
論文名稱: 環狀中孔洞材料-SBA-15對重金屬離子吸附及蛋白質純化之應用研究
Applications of annulated mesoporous silica for adsorption of heavy metal ion and for purification of protein
指導教授: 謝發坤
Fa-kuen Shieh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 93
中文關鍵詞: 中孔洞材料重金屬吸附蛋白質純化
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文分成兩個部分:
    第一部分,我們實驗室成功地在具有羧酸官能基的中孔洞材料表面修飾上可調節環狀大小之中孔洞材料,命名為XC-CAR-10,X代表雙端胺基化合物中間的碳數,應用於金屬吸附。大環分子效應對於提升環狀中孔洞材料的吸附能力扮演著相當重要的腳色,特別是3C-CAR-10,對於鉛離子具有相當優異的吸附能力和選擇性,飽和吸附能力約為300 µg/mg。其具有最適合的幾何大小及孔洞可與金屬陽離子形成主-客系統。
    第二部分,為了開發蛋白質純化的新穎材料,我們企圖將具有內環狀結構的中孔洞材料應用於固定化金屬親和層析法中,作為純化蛋白質的工具。由於環狀結構的中孔洞材料為相當優異的金屬吸附劑,吸附鈷 (II) 和鎳 (II) 離子後,形成金屬-環狀中孔洞材料錯合物展現出對於組胺酸標籤的蛋白質有相當不錯的鍵結能力,因此為蛋白質純化材料之發展打開了新的一頁。


    Two parts in this thesis:
    Part one: annular rings with controllable sizes are successfully created on the surface of COOH-functionalized mesoporous silica (namely, XC-CAR-10, where X represents the number of carbons in the diamines used) for the adsorption of metal ions. Macrocylic effect in our annulated mesoporous silica plays a vital role in enhancing its adsorption ability for meta ions. In particular, excellent adsorption ability and selectivity towards ~300 µg/mg of Pb2+ metal ion were achieved using 3C-CAR-10. 3C-CAR-10 contains suitable geometric sizes and the cavities offer the “best-fit” for the cations for the formation of host-guest complexes.
    Part two: in order to develop novel materials for protein purification, we performed annular mesoporous silica on immobilized metal affinity chromatography as a tool for protein purification. Because the annular mesoporous silica is an excellent metal ion adsorbent, e.g. Co2+ and Ni2+, the M2+-annulated materials complexes were applied for the assays of protein purification. Finally, annulated mesoporous silica showed higher binding capability of proteins with his-tags. Thus, it can open an auxiliary avenue in the development of a new resin for the protein purification process.

    中文摘要 I Abstract II 謝誌 III 目錄 IV 圖目錄 IX 表目錄 XI Part I 1 第一章 緒論 1 1-1 中孔洞材料的簡介 1 1-2 中孔洞材料的發展 2 1-3 中孔洞材料的應用 5 1-4 重金屬汙染物的危害 8 1-5 重金屬汙染物的處理方法 9 1-6 吸附理論 10 1-6-1 簡介 10 1-6-2 等溫吸附模式 11 1-7研究動機與目標 14 第二章 材料合成與鑑定部分 15 2-1 實驗藥品與設備 15 2-1-1 實驗藥品 15 2-1-2 實驗設備 16 2-2 中孔洞材料合成與鑑定 16 2-2-1 SBA-15合成步驟 17 2-2-2 合成具羧酸官能基的SBA-15 17 2-2-3 移除中孔洞材料中的模板 18 2-2-4 合成具環狀結構的YC-CAR-X 18 2-4 鑑定設備與原理 20 2-4-1 實驗儀器 20 2-4-2 X射線粉末繞射儀 21 2-4-3 氮氣等溫吸/脫附儀 22 2-4-4 傅立葉轉換紅外線吸收光譜儀 25 2-4-5 固態核磁共振儀 26 第三章 重金屬吸附實驗部分 27 3-1 原子吸收光譜儀 (Atomic Absorption Spectroscopy,AAS) 27 原理 27 實驗步驟 28 3-2 環狀結構CAR-10系列吸附重金屬實驗 28 3-3 不同pH對重金屬吸附的影響 29 3-4 中孔洞材料的Langmuir等溫吸附實驗 29 3-5 中孔洞材料的脫附實驗 29 第四章 重金屬吸附結果與討論 31 4-1 原子吸收光譜檢量線製作 31 4-2 環狀結構CAR-10系列吸附重金屬的實驗結果 32 4-3 環狀結構CAR-10系列吸附金屬離子莫爾數結果 35 4-4 不同pH對重金屬吸附的實驗結果 36 4-5 中孔洞材料的Langmuir等溫吸附實驗結果 38 4-6 中孔洞材料的脫附實驗結果 40 4-7 中孔洞材料對鉛離子吸附能力的文獻整理 41 第五章 結論 42 Part II 43 第六章 緒論 43 6-1 蛋白質純化方法的簡介 43 6-2 固定化金屬親和層析法發展 45 6-2-1 載體 46 6-2-2 螯合基 47 6-2-3 金屬離子 48 6-3 固定化金屬親和層析法 49 6-3-1固定化金屬親和層析法純化His-tag蛋白質 49 6-3-2 固定化金屬親和層析法純化磷酸化蛋白質 50 6-4 研究動機與目標 51 第七章 實驗部分 52 7-1 實驗藥品與儀器 52 7-2 環狀結構CAR-10系列吸附金屬實驗 53 7-3 CFP-10蛋白質製備 53 7-3-1 菌株篩選與蛋白質表達 53 7-3-2 蛋白質製備 54 7-4. GHR蛋白質製備 54 7-4-1 轉形作用 54 7-4-2 菌株篩選與蛋白質表達 55 7-4-3 蛋白質製備 55 7-5 蛋白質純化 56 中孔洞材料吸附金屬的蛋白質純化步驟 56 中孔洞材料未吸附金屬的蛋白質純化步驟 57 7-6 蛋白質濃度定量 57 原理 57 步驟 58 第八章 結果與討論 59 8-1 環狀結構CAR-10系列吸附金屬實驗結果 59 8-2 CFP-10蛋白質純化結果 60 8-2-1 SBA-15純化CFP-10 60 8-2-2 CAR-10和3C-CAR-10純化CFP-10 62 8-3 GHR蛋白質純化結果 64 8-3-1 SBA-15純化GHR 64 8-3-2 CAR-10和3C-CAR-10純化GHR 66 第九章 結論 68 第十章 參考資料 69 第十一章 附錄 74 環狀結構CAR-10系列鑑定結果 74

    1. Everett, D. H., Pure Appl. Chem 1972, 31, 577-638.
    2. Lee, C.-H.; Lin, T.-S.; Mou, C.-Y., Nano Today 2009, 4 (2), 165-179.
    3. Hudson, S. P.; Padera, R. F.; Langer, R.; Kohane, D. S., Biomaterials 2008, 29 (30), 4045-4055.
    4. Zhao, X. S.; Bao, X. Y.; Guo, W.; Lee, F. Y., Mater. Today 2006, 9 (3), 32-39.
    5. (a) Lin, Q. N.; Huang, Q.; Li, C. Y.; Bao, C. Y.; Liu, Z. Z.; Li, F. Y.; Zhu, L. Y., J. Am. Chem. Soc. 2010, 132 (31), 10645-10647; (b) Zhu, C. L.; Lu, C. H.; Song, X. Y.; Yang, H. H.; Wang, X. R., J. Am. Chem. Soc. 2011, 133 (5), 1278-1281; (c) Halamova, D.; Badanicova, M.; Zelenak, V.; Gondova, T.; Vainio, U., Appl. Surf. Sci. 2010, 256 (22), 6489-6494.
    6. Appell, M.; Jackson, M. A.; Dombrink-Kurtzman, M. A., J. Hazard. Mater. 2011, 187 (1–3), 150-156.
    7. (a) Thu, P. T. T.; Thanh, T. T.; Phi, H. N.; Kim, S.; Vo, V., J. Mater. Sci. 2010, 45 (11), 2952-2957; (b) Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascon, V., J. Hazard. Mater. 2009, 163 (1), 213-221; (c) Aguado, J.; Arsuaga, J. M.; Arencibia, A., Microporous Mesoporous Mat. 2008, 109 (1-3), 513-524.
    8. Wu, X.-W.; Ma, H.-W.; Li, J.-H.; Zhang, J.; Li, Z.-H., J. Colloid Interface Sci. 2007, 315 (2), 555-561.
    9. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Angew. Chem. Int. Ed. 2006, 45 (20), 3216-3251.
    10. (a) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., J. Am. Chem. Soc. 1992, 114 (27), 10834-10843; (b) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Nature 1992, 359 (6397), 710-712; (c) Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L.; Olson, D. H.; Sheppard, E. W., Chem. Mat. 1994, 6 (12), 2317-2326.
    11. (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D., Nature 1994, 368 (6469), 317-321; (b) Tanev, P. T.; Pinnavaia, T. J., Science 1995, 267 (5199), 865-867.
    12. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Science 1998, 279 (5350), 548-552.
    13. (a) Yang, Q.; Wang, S.; Fan, P.; Wang, L.; Di, Y.; Lin, K.; Xiao, F.-S., Chem. Mater. 2005, 17 (24), 5999-6003; (b) Yu, H.; Zhai, Q.-Z., Microporous Mesoporous Mater. 2009, 123 (1–3), 298-305.
    14. Wu, T. M.; Wu, G. R.; Kao, H. M.; Wang, J. L., J. Chromatogr. A 2006, 1105 (1-2), 168-75.
    15. Shahbazi, A.; Younesi, H.; Badiei, A., Chem. Eng. J. 2011, 168 (2), 505-518.
    16. Walcarius, A.; Mercier, L., J. Mater. Chem. 2010, 20 (22), 4478-4511.
    17. Shieh, F.-K.; Hsiao, C.-T.; Wu, J.-W.; Sue, Y.-C.; Bao, Y.-L.; Liu, Y.-H.; Wan, L.; Hsu, M.-H.; Deka, J. R.; Kao, H.-M., J. Hazard. Mater. 2013, 260 (15), 1083-1096.
    18. Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; Johnson, C. A.; von Gunten, U.; Wehrli, B., Science 2006, 313 (5790), 1072-1077.
    19. (a) Namasivayam, C.; Ranganathan, K., Environ. Technol. 1995, 16 (9), 851-860; (b) Wu, S.; Wu, C.; Li, F.; Xu, R., AIP Conf. Proc. 2010, 1251 (1), 336-339.
    20. (a) Fang, G. Z.; Tan, J.; Yan, X. P., Sep. Sci. Technol. 2005, 40 (8), 1597-1608; (b) Burleigh, M. C.; Dai, S.; Hagaman, E. W.; Lin, J. S., Chem. Mater. 2001, 13 (8), 2537-2546.
    21. Freundlich, H.; Leipzig, U., Über die Absorption in Lösungen. Universität Leipzig: 1906.
    22. Langmuir, I., J. Am. Chem. Soc. 1918, 40 (9), 1361-1403.
    23. Tsai, C. T.; Pan, Y. C.; Ting, C. C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H. M., Chem. Commun. 2009, (33), 5018-5020.
    24. Baiker, A., International Chem. Eng. 1985, 17 (25), 25.
    25. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E., J. Am. Chem. Soc. 1940, 62 (7), 1723-1732.
    26. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., J. Am. Chem. Soc. 1951, 73 (1), 373-380.
    27. Bowman-James, K., Macrocyclic Ligands. In Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd: 2011.
    28. Hancock, R. D., J. Chem. Educ. 1992, 69 (8), 615.
    29. Kosa, S. A.; Al-Zhrani, G.; Abdel Salam, M., Chem. Eng. J. 2012, 181–182 (0), 159-168.
    30. Huang, J.; Ye, M.; Qu, Y.; Chu, L.; Chen, R.; He, Q.; Xu, D., J. Colloid Interface Sci. 2012, 385 (1), 137-146.
    31. Benhamou, A.; Baudu, M.; Derriche, Z.; Basly, J. P., J. Hazard. Mater. 2009, 171 (1–3), 1001-1008.
    32. Wu, S.; Li, F.; Xu, R.; Wei, S.; Li, G., J Nanopart Res 2010, 12 (6), 2111-2124.
    33. Jiang, F. M.; Pu, Q. M.; Ren, F. L.; Huang, H. Q.; Cao, F. Y.; Li, Y.; Wang, B., Mater. Res. Innovations 2013, 17 (2), 122-128.
    34. Jiang, F. M.; Ren, F. L.; Tan, A. X.; Xiao, J. Y.; Zhou, Z., Mater. Res. Innovations 2013, 17 (4), 283-288.
    35. Machida, M.; Fotoohi, B.; Amamo, Y.; Mercier, L., Appl. Surf. Sci. 2012, 258 (19), 7389-7394.
    36. Liu, Y.; Liu, Z.; Gao, J.; Dai, J.; Han, J.; Wang, Y.; Xie, J.; Yan, Y., J. Hazard. Mater. 2011, 186 (1), 197-205.
    37. Hearon, J. Z., JNCI J Natl Cancer Inst 1948, 9 (1), 1-11.
    38. Porath, J.; Carlsson, J. A. N.; Olsson, I.; Belfrage, G., Nature 1975, 258 (5536), 598-599.
    39. Hochuli, E.; Döbeli, H.; Schacher, A., J. Chromatogr. A 1987, 411, 177-184.
    40. Chaga, G. S., J. Biochem. Bioph. Methods 2001, 49 (1–3), 313-334.
    41. Pearson, R. G., J. Am. Chem. Soc. 1963, 85 (22), 3533-3539.
    42. Ueda, E. K. M.; Gout, P. W.; Morganti, L., J. Chromatogr. A 2003, 988 (1), 1-23.
    43. Arnold, F. H., Nat Biotech 1991, 9 (2), 151-156.
    44. Heung-Chin Cheng, R. Z. Q., Hemant Paudel, and Hong-Jian Zhu, Enzyme research 2011.
    45. Delom, F.; Chevet, E., Proteome science 2006, 4 (1), 15.
    46. Braich, N.; Codd, R., Analyst 2008, 133 (7), 877-880.
    47. (a) Mirza, M. R.; Rainer, M.; Messner, C. B.; Guzel, Y.; Schemeth, D.; Stasyk, T.; Choudhary, M. I.; Huber, L. A.; Rode, B. M.; Bonn, G. K., Analyst 2013, 138 (10), 2995-3004; (b) Cheng, G.; Liu, Y.-L.; Zhang, J.-L.; Sun, D.-H.; Ni, J.-Z., Anal Bioanal Chem 2012, 404 (3), 763-770.
    48. Bradford, M. M., Anal. Biochem. 1976, 72, 248-54.

    QR CODE
    :::