跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡筱薇
Hsiao-Wei Hu
論文名稱: 多商店環境下之多階層的知識挖掘
Knowledge Discovery at Multiple Concept Levels in a Multiple Store Environment
指導教授: 陳彥良
Yen-Liang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
畢業學年度: 93
語文別: 英文
論文頁數: 67
中文關鍵詞: 演算法關連法則資料探勘
外文關鍵詞: Algo, Store chain, Association rule, Data mining
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的幾年中,有眾多的研究在探討購物籃分析(Market Basket Analysis),購物籃分析是藉由粹取交易資料庫中的關連性,作為挖掘客戶購買模式之絕佳方法。現今的企業中,在世界不同區域擁有子公司、分公司以及代理商已經是相當普遍的經營模式,然而,只針對單一資料庫而設計之傳統關聯規則演算法已經不適用於這樣的多商店環境,為了解決傳統關聯規則演算法對於多商店環境的不適用性,一個多商店關聯規則演算法變由此而產生。
    倘若我們就決策者的角度而言,規則不僅僅是需要被發掘,規則的易讀性以及其他可利用性更是重要,除此之外,不同時空組合之下的規則對於不同階級的決策者也會有著不同的意義,例如:一位跨國企業的總裁,他所感興趣的資訊是包含在較大範圍的時空組合之下,如2005年全球銷售的產品中隱藏著什麼樣的規則,而一位區域的決策者,他所在意的資訊將會包含在較小的時空組合之下,如在春天的日本其銷售的產品中,隱藏著什麼樣潛在的規則。在不同的時空組合之下,將會隱含著不同的零售知識,而由於時空因素的差異,不同階級的決策者需要在不同的情境中運用不同的零售知識。本論文研究的目標,即是滿足這樣的需求,藉由延伸在多商店環境下的關連規則方法,我們提出一個可以在不同時空維度組合之下,找出關連規則的方法,來滿足企業內不同的決策需求。實驗的結果得知,本論文提出的方式能達到運算上之效率。


    Over the past few years, a considerable number of studies have been made on market basket analysis. Market basket analysis is a useful method for discovering customer purchasing patterns by extracting association from stores’ transaction database. In the business world today, it is common for a company to have subsidiaries, branches, or dealers in different geographical locations; hence, considering only the association rule of an individual store is not suitable for a multi-store environment. Therefore, a store-chain association rule is proposed in [30] to compensate this over-generalization. The rules discovered in [30] are represented by way of rule-by-rule, that is, the store-chain association rule is a rule-oriented method in multi-store environment and each discovered rule will be attached with a series of pairs of time-and-place in which the contexts each rule apply to.
    However, from the perspective of a business strategist, not only do the rules have to be discovered, but the rules also must be readily interpreted for easy reading and further usage. In addition, different executive personnel will require different interpretation of the rules for different scenarios because under different granularities of time-and-place, the retailing knowledge will be different and the goal of our work is to satisfy such dynamic needs. By extending of the existing techniques of mining association rules in a multi-store environment, we develop an algorithm that can find the rules under different granularities of time-and-place to satisfy the different demands of different decision makers within the company. Our empirical evaluation shows that the proposed method is computationally efficient.

    1 Introduction 8 2 Literature review 12 2.1 Traditional association rule 13 2.2 Store-chain association rule 16 2.3 Our Work 20 3 Problem Definition 23 3.1 Time and Place 24 3.2 TP lattice & Section 25 3.3 Context 27 3.4 Support & Large itemset 28 3.5 Confidence & Section rules 30 4 Algorithm 32 4.1 Important elements in the algorithm 36 4.1.1 EDIC algorithm 36 4.1.2 SI_table 38 4.1.3 Hashing Tree 38 4.2 The function HTree(HT, ) 40 4.3 The function combine(i,j,k) 43 4.4 Finding LL itemset and section rules 45 5 Performance evaluation 46 5.1 Data generation 47 5.2 Performance measures 49 5.3 Simulation results 52 6 Conclusion 56 7 Reference 58 8 Appendix 62

    [1] A. Freitas, “On rule interestingness measures,” Knowledge-Based Systems 12(5) (1999) 309-315.
    [2] C. M. Kuok, A. W. Fu and M. H. Wong, “Mining fuzzy association rules in databases,” SIGMOD Record 27(1) (1998) 41-46.
    [3] C. H. Lee, C. R. Lin and M. S. Chen, “On mining general temporal association rules in a publication database,” Proceedings of the 2001 IEEE International Conference on Data Mining, 337-344.
    [4] E. Clementini, P.D. Felice and K. Koperski, “Mining multiple-level spatial association rules for objects with a broad boundary,” Data and Knowledge Engineering, 34(3) (2000) 251-270.
    [5] H. Ishibuchi, T. Nakashima and T. Yamamoto, “Fuzzy association rules for handling continuous attributes,” Proceedings of the IEEE International Symposium on Industrial Electronics, (2001) 118-121.
    [6] H. Mannila, H. Toivonen, and A. I. Verkamo, “Efficient Algorithm for Discovering Association Rules,” Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, (1990) 181-192
    [7] H. Lu, L. Feng and J. Han, “Beyond intra-transaction association analysis: mining multi-dimensional inter-transaction association rules,” ACM Transactions on Information Systems 18 (4) (2000) 423-454.
    [8] I. Bose and R. K. Mahapatra, “Business data mining--a machine learning perspective,” Information and Management 39 (2001) 211-225.
    [9] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” Proceedings of the 2000 ACM-SIGMOD Int. Conf. on Management of Data, Dallas, TX, May, (2000).
    [10] J. Han, Y. Fu. “Discovery of Multiple-level Association Rules from Large Databases,” Proceedings of the 21th International conference on Very Large Databases, Zurich, Switzerland, September (1995)
    [11] J. Han and M. Kamber, “Data Mining,” Morgan Kaufmann, San Francisco,(2001)
    [12] J. Han and Y. Fu, “Mining multiple-level association rules in large databases,” IEEE Transactions on Knowledge and Data Engineering, 11(5) (1999) 798-805
    [13] J. Liu, Y. Pan, K. Wang, and J. Han, “Mining Frequent Item Sets by Opportunistic Projection,” Proceedings of the 2002 Int. Conf. on Knowledge Discovery in Databases, Edmonton, Canada, July (2002).
    [14] J. M. Ale and G. H. Rossi, “An approach to discovering temporal association rules,” Proceedings of the 2000 ACM Symposium on Applied Computing (2000) 294-300.
    [15] J.-S. Park, M.-S. Chen and P. S. Yu, “Using a hash-based method with transaction trimming for mining association rules,” IEEE Trans. on Knowledge and Data Engineering 9 (1997) 813-825.
    [16] J. Wijsen and R. Meersman, “On the complexity of mining quantitative association rules,” Data Mining and Knowledge Discovery 2 (1998) 263-281.
    [17] K. Koperski and J. Han, “Discovery of spatial association rules in geographic information databases,” Proc. 4th International Symposium on Large Spatial Databases, Maine, (1995) 47-66.
    [18] M.-S. Chen, J. Han and P.S. Yu, “Data mining: an overview from a database perspective,” IEEE Transactions on Knowledge and Data Engineering 8 (1996) 866-883.
    [19] R. Agrawal, T. Imielinski and A. Swami, “Mining association rules between sets of items in large databases,” Proceedings of the ACM SIGMOD International Conference on Management of Data, (1993) 207-216
    [20] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” Proceedings of the 20th VLDB Conference, Santiago, Chile, (1994) 478-499
    [21] R. Rastogi and K. Shim, “Mining optimized association rules with categorical and numeric attributes,” IEEE Transactions on Knowledge and Data Engineering 14 (2002) 29-50.
    [22] R. Srikant and R. Agrwal, “Mining Generalized Association Rules,” Proceedings of the 21th International Conference on Very Large Databases, Sept.(1995) 407-419
    [23] R. J. Bayardo Jr. and R. Agrawal, “Mining the most interesting rules,” In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. (1999) 145-154.
    [24] R. Srikant and R. Agrawal, “Mining quantitative association rules in large relational tables,” Proceedings of the ACM-SIGMOD 1996 Conference on Management of Data, Montreal, Canada, June (1996) 1-12.
    [25] S. Brin, R. Motwani, J. D. Ullman and S. Tsur, “Dynamic itemset counting and implication rules for market basket data,” Proceedings of the 1997 ACM-SIGMOD Conference on Management of Data, (1997) 255-264
    [26] Show-Jane Yen and Arbee L.P. Chen. “An Efficient Approach to Discovering Knowledge from Large Databases,” Proceedings of the International Conference on Parallel and Distributed Information Systems, (1996) 8-18
    [27] S. Ye and J. A. Keane, “Mining Association Rules in Temporal Databases,” IEEE Proceedings of International Conference on Systems, Man, and Cybernetics, New York, (1998) 2803-2808
    [28] Wei Wang, Jiong Yang and Richard Muntz, “Temporal Association Rule with Numerical Attributes,” Department of Computer Science, University of California, Los Angeles, (1999).
    [29] X. Chen, I. Petrounias, and H. Heathfield, “Discovering Temporal Association Rules in Temporal Databases,” Proceedings of International Workshop on Issues and Applications of Database Technology (1998) 312-319
    [30] Yen-Liang Chen, Kwei Tang, Ren-Jie Shen and Ya-Han Hu, “Market basket analysis in a multiple store environment,” Decision Support System, 40(2) (2005) 339-354
    [31] Y. Li, P. Ning, X. S. Wang and S. Jajodia, “Discovering calendar-based temporal association rules,” Proceedings of the Eighth International Symposium on Temporal Representation and Reasoning (2001) 111-118.

    QR CODE
    :::