| 研究生: |
黃翊筑 Yi-Chu Huang |
|---|---|
| 論文名稱: |
ASIC3基因的剔除調控M1/M2巨噬細胞比例以減緩坐骨神經慢性壓迫性損傷所誘發的熱痛覺過敏 ASIC3 gene deletion modulates M1/M2 macrophage ratio to attenuate thermal hyperalgesia induced by chronic constriction injury of the sciatic nerve |
| 指導教授: |
孫維欣
Wei-Hsin Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | ASIC3 、神經病變性疼痛 、巨噬細胞 、熱痛覺過敏 、CCI |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經病變性疼痛是由神經系統中的原發病變或功能障礙引發或引起的疼痛。症狀包括自發性疼痛,感覺異常,感覺異常,異常性疼痛和痛覺過敏。神經病變性疼痛通常伴隨神經炎症,免疫反應,衛星神經膠質細胞 (Satellite glial cells, SGCs) 激活和神經元損失。局部組織酸中毒是調節發炎反應和誘發疼痛的主要因素。酸敏感離子通道3 (Acid-sensing ion channel 3, ASIC3) 是質子傳感受體之一,直接或間接地介導疼痛和痛覺過敏反應。然而,ASIC3參與神經病變性疼痛的相關機制尚不清楚。我已經建立了坐骨神經慢性壓迫性損傷模型(Chronic constriction injury, CCI),以探討ASIC3在神經性疼痛中的作用。我發現CCI小鼠出現了長期的機械性和熱痛覺過敏反應。ASIC3-/-小鼠從第一周開始減緩由CCI誘導的長期熱痛覺過敏,並且抑制效果維持在14W。組織化學分析顯示在CCI小鼠的受損神經中顆粒性細胞和巨噬細胞引發長期神經發炎反應。在ASIC3-/-小鼠中,巨噬細胞的總數在術後第一周增加但在第4、8周時減少。我發現剔除ASIC3基因減少了促炎性巨噬細胞(M1)的數量,但增加了抗炎症巨噬細胞(M2)的數量。因此,從我的實驗結果可以推論ASIC3可能藉由調控M1/M2巨噬細胞的比例來參與在外週神經損傷誘導的熱痛覺過敏。
Neuropathic pain is a pain initiated or caused by a primary lesion or dysfunction in the nervous system. Symptoms include spontaneous pain, dysaesthesia, paraesthesia, allodynia and hyperalgesia. Neuropathic pain often accompanies with neuroinflammation, immune responses, satellite glial cells (SGCs) activation and neuron loss. Local tissue acidosis is a major factor to regulate inflammation and induce pain. Acid-sensing ion channel 3 (ASIC3), one of proton-sensing receptors, directly or indirectly mediates pain and hyperalgesia. However, it remains unclear whether is involved in neuropathic pain. I have established a model chronic constriction injury of sciatic nerves (CCI) to explore the role of ASIC3 in neuropathic pain. I have found that CCI mice developed long-term mechanical hyperalgesia and thermal hyperalgesia. In ASIC3-/- mice, the long-term thermal hyperalgesia induced by CCI was reduced from the first week and the inhibitory effect was maintained for 14W. Histochemistry analysis of injured nerve demonstrated that CCI mice developed long-term inflammation with granulocytes and macrophages. In ASIC3-/- mice, the number of macrophages were significantly increased compared to ASIC3+/+ at the first week but decreased at 4, 8W. I have found that ASIC3 deletion decreased the number of pro-inflamatory macrophage (M1), but increased the number of anti-inflamatory macrophage (M2) after CCI surgery. Accordingly, ASIC3 may involve in thermal hyperalgesia induced by peripheral nerve injury via modulates the proportion of M1 / M2 macrophages ratio.
Finnerup Leigh S., Kunjan P. A., Kang J.W.M., Keay, K. A. (2015). Evidence for a distinct neuro-immune signature in rats that develop behavioural disability after nerve injury. Journal of Neuroinflammation, 12.
Baliki M., Calvo O., Chialvo D.R., Apkarian A.V. (2005) Spared nerve injury rats exhibit thermal hyperalgesia on an automated operant dynamic thermal escape task. Mol Pain, 1.
Beirowski B., Adalbert R., Wagner D., Grumme D.S., Addicks K., Ribchester R.R., Coleman M.P. (2005) The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neurosci. 6: 6-10.
Calvo M., Dawes J. M., Bennett D. L. (2012) The role of the immune system in the generation of neuropathic pain. The Lancet Neurology, 11:629–642.
Chen P., Piao X., Bonaldo P. (2015) Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathologica 130: 605–618.
Cherkas P. S., Huang T.-Y., Pannicke T., Tal M., Reichenbach A., Hanani M. (2004). The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain, 110, 290–298.
Costa F. A. L. and Neto F. L. M. (2015). Satellite glial cells in sensory ganglia: its role in pain. Brazilian Journal of Anesthesiology. 65: 73–81.
Echeverry S., Wu Y., Zhang J. (2013) Selectively reducing cytokine/chemokine expressing macrophages in injured nerves impairs the development of neuropathic pain. Exp. Neurol. 240: 205–218.
Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DL,Bouhassira D,Cruccu G,Freeman R, Hansson P,Nurmikko T,Raja SN,Rice AS,Serra J,Smith BH,Treede RD,Jensen TS. (2016) Neuropathic pain: an updated grading system for research and clinical practice. Pain 157:1599-606.
Gaudet A. D., Popovich P. G., Ramer M. S. (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury.Journal of Neuroinflammation 8.
Ji R. R., Xu Z. Z., Gao Y.J. (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 13:533–548.
Ji R. R.,Chamessian A., Zhang Y. Q. (2016) Pain Regulation by Non-neuronal Cells and Inflammation. Science 354: 572–577.
Kiguchi N., Kobayashi D., Saika F., Matsuzaki S., Kishioka S. (2017) Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages. International Journal of Molecular Sciences, 18, 2296.
Kobayashi Y., Kiguchi N., Fukazawa Y., Saika F., Maeda T., Kishioka S. (2015) Macrophage-T cell interactions mediate neuropathic pain through the glucocorticoid-induced tumor necrosis factor ligand system. J. Biol. Chem. 290: 12603–12613.
Komori T., Morikawa Y., Inada T., Hisaoka T., Senba E. (2011). Site-specific subtypes of macrophages recruited after peripheral nerve injury. NeuroReport, 22: 911–917.
Liu C.C., Lu N., Cui Y., Yang T., Zhao Z.Q., Xin W.J., Liu X.G. (2010) Prevention of paclitaxel-induced allodynia by minocycline: Effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol. Pain 6, 76.
Liu F.Y., Sun Y.N., Wang F.T., Li Q., Su L., Zhao Z.F., Meng X.L., Zhao H., Wu X., Sun Q., Xing G.G., Wan Y. (2012). Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Research, 1427: 65–77.
Luttges M.W., Kelly P.T., Gerren R.A. (1976) Degenerative changes in mouse sciatic nerves: electrophoretic and electrophysiologic characterizations. Exp Neurol 50: 706-733.
Ohara P. T., Vit J.-P., Bhargava A., Romero M., Sundberg C., Charles A. C., Jasmin L. (2009). Gliopathic Pain: When Satellite Glial Cells Go Bad. The Neuroscientist. 15: 450–463.
Old E. A., Nadkarni S., Grist J., Gentry C., Bevan S., Kim K.W., Mogg A.J., Perretti M., Malcangio M. (2014) Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Invest. 124:2023-36
Omori M., Yokoyama M., Matsuoka Y., Kobayashi H., Mizobuchi S., Itano, Y., Morita K., Ichikawa H. (2008). Effects of selective spinal nerve ligation on acetic acid-induced nociceptive responses and ASIC3 immunoreactivity in the rat dorsal root ganglion. Brain Research, 1219: 26–31.
Pannell M., Labuz D., Celik M. Ö., Keye J., Batra A., Siegmund B., Machelska H. (2016). Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides. Journal of Neuroinflammation, 13.
Shamash S., Reichert F., Rotshenker S. (2002) The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci. 22: 3052-3060.
Sluka K. A., Price M. P., Breese N. M., Stucky C. L., Wemmie J. A., Welsh M.J. (2003) Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain. 106:229–239.
Sluka K. A., Winter O. C., Wemmie J.A. (2009) Acid-sensing ion channels: A new target for pain and CNS diseases. Curr Opin Drug Discov Devel. 12: 693–704.
Sorge R. E., Mapplebeck J. C., Rosen S., Beggs S., Taves S., Alexander J. K., Martin L. J., Austin J. S., Sotocinal S. G., Chen D., Yang M., Shi X. Q., Huang H., Pillon N. J., Bilan P. J., Tu Y., Klip A., Ji R.R., Zhang J., Salter M. W., Mogil J. S. (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice.Nat Neurosci. 18:1081-3.
Svíženská I. H., Brázda V., Klusáková I., Dubový P. (2013). Bilateral Changes of Cannabinoid Receptor Type 2 Protein and mRNA in the Dorsal Root Ganglia of a Rat Neuropathic Pain Model. Journal of Histochemistry & Cytochemistry, 61:529–547.
Treede R. D., Jensen T. S., Campbell J. N., Cruccu G., Dostrovsky J. O., Griffin J. W., Hansson P., Hughes R., Nurmikko T., Serra J. (2008) Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology 70: 1630-5.
Waller A.V. (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philosophical Transactions of the Royal Society of London. 140: 423-429.
Yu Y., Chen Z., Li W.-G., Cao H., Feng E.-G., Yu F., Liu H., Jiang H., Xu T.-L. (2010). A Nonproton Ligand Sensor in the Acid-Sensing Ion Channel. Neuron, 68: 61–72.