跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭詠程
Yung-Cheng Cheng
論文名稱: 以溶劑鑄膜法製成PQ:PMMA薄膜之光化學反應模型
Photochemical Reaction Model of PQ:PMMA Film Fabricated by Solvent Casting
指導教授: 鍾德元
Te-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 體積布拉格光柵溶劑鑄膜法
外文關鍵詞: Solvent casting
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究計畫達到的目標有兩項。第一項為開發PQ:PMMA感光高分子膜的溶劑鑄膜法製程。利用四氫呋喃作為有機溶劑溶解PMMA粉末與PQ粉末而形成鑄膜溶液,使用刀刮法將PQ:PMMA濕膜塗佈於玻璃基板上,進行揮發固化成膜,最終完成PQ:PMMA膜的製備。
    第二項,使用溶劑鑄膜法製成之PQ:PMMA光化學反應模型。依照PQ:PMMA膜的材料特性更改舊有光化學反應模型。藉由PQ:PMMA膜光化學反應模型進行模擬分子濃度空間分佈、分子濃度分佈的第一階傅立葉係數、折射率空間分佈的第一階傅立葉係數。使用雙光束干涉實驗對PQ:PMMA膜記錄體積布拉格光柵(VBG),並且藉由模型擬合的方式,對實驗數據進行參數擬合找出最佳的樣品製程條件。最後,使用最佳曝光時間條件與最佳製程條件進行記錄,製作出更高折射率變化量的PQ:PMMA膜VBG。


    In this research, the two goals were proposed. The first one is the solvent casting process of PQ:PMMA photopolymer film. PMMA powder and 9,10-phenanthrenequinone(PQ) powder are dissolved in oxolane(THF) to form the casting solution. With Doctor-blade coating, the wet film is coated on the glass substrate. During evaporation in the oven, the PQ:PMMA film is formed.
    The second one is the modeling of PQ:PMMA film fabricated by solvent casting method. The photochemical reaction rate equations were written down. The distribution of molecule concentration under different initial conditions could be simulated by the rate equations. The simulation can further be used to determine the refractive index distribution of PQ-PMMA. Finally, using Fourier series analysis, the 1st order Fourier coefficient of refractive index distribution can be estimated. Experimentally, using two beam interference, the volume Bragg grating(VBG) is recorded in the PQ:PMMA film. Relies on model fitting of experimental data, the best fabrication parameters and exposure time conditions could be find out. Finally, the higher refractive index modulation of VBG could be recorded.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 理論背景 5 2-1 聚合物化學(Polymer Chemistry) 5 2-1-1 聚合物(Polymer)與單體(Monomer) 5 2-1-2 聚合反應(Polymerization) 8 2-2 PQ:PMMA感光高分子材料 11 2-2-1 材料簡介與兩階段熱聚合法(Two-Step Thermal Polymerization) 11 2-2-2 PQ的光化學反應 15 2-3 體積布拉格光柵(Volume Bragg Grating) 19 2-3-1 雙光束干涉(Two Beam Interference) 19 2-3-2 體積布拉格光柵與布拉格條件(Bragg Condition) 22 2-3-3 耦合波理論(Coupled-Wave Theory) 25 2-4 PQ:PMMA感光高分子光化學反應模型 30 2-4-1 光化學反應速率方程式 30 2-4-2 分子濃度與折射率之關係 36 2-4-3 濃度空間分佈的傅立葉級數分析 38 2-5 溶劑鑄膜法(Solvent Casting) 42 2-5-1 溶液鑄膜製程與鑄膜溶液 42 2-5-2 濕膜塗佈方法與揮發、烘烤 44 第三章 PQ:PMMA感光高分子膜光化學反應模型之修改 48 3-1 PQ:PMMA膜光化學反應模型 48 3-2 光化學反應模型之參數介紹 51 3-3 曝光時間條件對折射率變化量的數值模擬與分析 54 3-3-1 連續式曝光時濃度空間分佈、一階濃度振幅、折射率變化量隨時間變化之數值模擬 54 3-3-2 短時間曝光時濃度空間分佈、一階濃度振幅、折射率變化量隨時間變化之數值模擬 60 3-3-3 停止曝光時間對折射率變化量的數值模擬 64 3-4 樣品參數對折射率變化量的數值模擬與分析 68 3-4-1 PQ-PMMA生成反應的速率常數對於折射率變化量之數值模擬 68 3-4-2 可反應氫原子濃度對於折射率變化量之數值模擬 70 第四章 PQ:PMMA膜製備與體積布拉格光柵之記錄實驗 72 4-1 PQ:PMMA膜之製備 72 4-1-1 有機溶劑與溶劑鑄膜法之選擇 72 4-1-2 刀刮法(Doctor-blade coating)製程 74 4-2 雙光束干涉實驗之架構 77 4-2-1 架構介紹 77 4-2-2 繞射效率量測方法 79 4-3 雙光束干涉實驗與模型參數擬合 81 4-4 改變揮發溫度之實驗 86 4-5 短曝光時間曝光實驗 87 4-6 PQ:PMMA膜光化學反應模型之修正 90 第五章 結論 95 第六章 參考文獻 97

    [1] Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, "Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters," Opt. Lett., vol. 33, no. 6, pp. 566-568, 2008.
    [2] L. Shiuan Huei, Y. H. Ken, C. Wei-Zheng, and W. Wha Tzong, "Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage," Opt. Lett., vol. 25, no. 7, pp. 451--453, 2000, doi: 10.1364/OL.25.000451.
    [3] W.-p. Chan, "以錐形半導體放大器為增益介質, 外腔 VBG 回饋半導體雷射研究," National Central University, 2010.
    [4] L. Shui et al., "Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material," J. Opt. Soc. Am. B, vol. 28, no. 11, pp. 2833--2843, 2011, doi: 10.1364/JOSAB.28.002833.
    [5] Y. Diao, L. Shaw, Z. Bao, and S. C. B. Mannsfeld, "Morphology control strategies for solution-processed organic semiconductor thin films," Energy Environ. Sci., 10.1039/C4EE00688G vol. 7, no. 7, pp. 2145-2159, 2014, doi: 10.1039/C4EE00688G.
    [6] D. I. Bower, "An introduction to polymer physics," ed: American Association of Physics Teachers, 2003.
    [7] S. H. Lin, S.-L. Cho, J.-H. Lin, K. Y. Hsu, and S. Chi, "Influence of fabrication conditions on characteristics of phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for holographic memory," Opt. Commun., vol. 320, pp. 145-150, 2014.
    [8] W.-T. Hsu, "利用 PQ-PMMA 擴散特性製作第二階反射式體積布拉格光柵之研究," National Central University, 2018.
    [9] B.-J. Shih, "以動態模型分析 PQ: PMMA 作為體積布拉格光柵之繞射效率研究," National Central University, 2016.
    [10] Y. Qi et al., "Study of PQ/PMMA photopolymer. Part 2: experimental results," JOSA B, vol. 30, no. 12, pp. 3308-3315, 2013.
    [11] B. Shih, C. Chen, Y. Hsieh, T. Chung, and S. Lin, "Modeling the Diffraction Efficiency of Reflective-Type PQ-PMMA VBG Using Simplified Rate Equations," IEEE Photonics J., vol. 10, no. 6, pp. 1-7, 2018, doi: 10.1109/JPHOT.2018.2880947.
    [12] J. W. Goodman, Introduction to Fourier optics. Roberts and Company Publishers, 2005.
    [13] R. Collier, Optical holography. Elsevier, 2013.
    [14] H. Kogelnik, "Coupled Wave Theory for Thick Hologram Gratings," Bell System Technical Journal, vol. 48, no. 9, pp. 2909-2947, 1969, doi: https://doi.org/10.1002/j.1538-7305.1969.tb01198.x.
    [15] E. Hecht, Optics. Pearson, 2012.
    [16] Y.-H. Hsieh, "以動態模型分析 PQ-DMNA/PMMA 製作體積布拉格光柵之光化學反應與開發同調雷射光束合併元件之研究," National Central University, 2018.
    [17] M. R. Gleeson and J. T. Sheridan, "Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling," JOSA B, vol. 26, no. 9, pp. 1736-1745, 2009.
    [18] E. Drioli and L. Giorno, Membrane operations: innovative separations and transformations. John Wiley & Sons, 2009.
    [19] J. A. Lim, H. S. Lee, W. H. Lee, and K. Cho, "Control of the morphology and structural development of solution‐processed functionalized acenes for high‐performance organic transistors," Adv. Funct. Mater., vol. 19, no. 10, pp. 1515-1525, 2009.
    [20] S. Liu, W. M. Wang, A. L. Briseno, S. C. Mannsfeld, and Z. Bao, "Controlled deposition of crystalline organic semiconductors for field‐effect‐transistor applications," Adv. Mater., vol. 21, no. 12, pp. 1217-1232, 2009.
    [21] A. A. Virkar, S. Mannsfeld, Z. Bao, and N. Stingelin, "Organic semiconductor growth and morphology considerations for organic thin‐film transistors," Adv. Mater., vol. 22, no. 34, pp. 3857-3875, 2010.
    [22] V. R. Kumar, N. Rajkumar, F. Ariese, and S. Umapathy, "Direct observation of thermal equilibrium of excited triplet states of 9, 10-phenanthrenequinone. A time-resolved resonance Raman study," The Journal of Physical Chemistry A, vol. 119, no. 40, pp. 10147-10157, 2015.
    [23] I. Y. Evchuk, R. Musii, R. Makitra, and R. Pristanskii, "Solubility of polymethyl methacrylate in organic solvents," Russ. J. Appl. Chem., vol. 78, no. 10, pp. 1576-1580, 2005.

    QR CODE
    :::