| 研究生: |
陳振予 Cheng-Yu Chen |
|---|---|
| 論文名稱: |
早型星系的形狀與暗物質 The shapes and dark matter of early-type galaxies |
| 指導教授: |
黃崇源
Chorng-Yuan Hwang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 天文研究所 Graduate Institute of Astronomy |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 星系形成 、星系演化 、早型星系 、星系暗物質暈 |
| 外文關鍵詞: | Galaxy formation, Galaxy evolution, Early-type galaxies, Galaxy dark matter halos |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大型早型星系,包含橢圓與透鏡星系,主要來源於星系的合併。因此大型早型星系的許多性質都與合併星系的過程有關,例如星系的外形與暗物質分佈。本論文研究不同環境下的早型星系的形狀,發現相對而言在高密度區的早型星系要比低密度區的早型星系接近球對稱。一個可能的原因是兩者在星系合併前的空間分佈不同,或是高密度區的早型星系受到周圍星系的潮汐力的影響而變圓。另外,透過比較早型星系與螺旋星系的動力學質量分佈得知,早型星系的暗物質比例至少與螺旋星系相當,且早型星系的衛星星系有較橢的繞行軌道。我們推測是因為在星系合併過程中合併星系的角動量會傳遞給其衛星星系而讓其有較橢的軌道。
Large early-type galaxies (ETGs), including elliptical and lenticular galaxies, are mainly formed from major mergers of galaxies. Therefore, some of the properties of large ETGs would be related to the process of merging galaxies, such as the shapes of galaxies and the distribution of dark matter. This thesis studies the shapes of ETGs in different environments. The results show that the ETGs in higher density environments are relatively closed to spherically symmetric than those in lower density environments. One possible reason is that the spatial distributions of the progenitor galaxies of the mergers are different, or the ETGs in the high-density environments become rounder due to the tidal force of the surrounding galaxies. Furthermore, the results of comparing the dynamical mass distributions of ETGs with those of spiral galaxies show that the dark matter fraction of ETGs should be at least equivalent to that of spiral galaxies and that the orbital shapes of satellite galaxies of ETGs should be relatively elliptical than those of spiral galaxies. One possible reason is that the angular momentum of the merging galaxies will be transferred to their satellite galaxies during the merging process, causing the orbital shapes relatively elliptical.
[1] E. P. Hubble, “Extragalactic nebulae.,” The Astrophysical Journal, vol. 64, 1926.
[2] V. C. Rubin and W. K. Ford Jr, “Rotation of the andromeda nebula from a spectroscopic survey of emission regions,” The Astrophysical Journal, vol. 159, p. 379, 1970.
[3] M. S. Roberts and R. N. Whitehurst, “The rotation curve and geometry of m31 at large galactocentric distances.,” The Astrophysical Journal, vol. 201, pp. 327–346, 1975.
[4] E. Corbelli and P. Salucci, “The extended rotation curve and the dark matter halo of m33,” Monthly Notices of the Royal Astronomical Society, vol. 311, no. 2, pp. 441–447, 2000.
[5] S. Cole, A. AragonSalamanca, C. S. Frenk, J. F. Navarro, and S. E. Zepf, “A recipe for galaxy formation,” Monthly Notices of the Royal Astronomical Society, vol. 271, no. 4, pp. 781–806, 1994.
[6] C. Chiosi, E. Merlin, L. Piovan, and R. Tantalo, “Monolithic view of galaxy formation and evolution,” Galaxies, vol. 2, no. 3, pp. 300–381, 2014.
[7] J. R. Primack and M. A. Gross, “Hot dark matter in cosmology,” in Current aspects of neutrino physics, Springer, 2001, pp. 287–308.
[8] S. D. White, C. S. Frenk, and M. Davis, “Clustering in a neutrino-dominated universe,” The Astrophysical Journal, vol. 274, pp. L1–L5, 1983.
[9] J. S. Bullock and M. BoylanKolchin, “Smallscale challenges to the Λcdm paradigm,” Annual Review of Astronomy and Astrophysics, vol. 55, 2017.
[10] M. Cappellari, “Structure and kinematics of early-type galaxies from integral field spectroscopy,” Annual review of astronomy and astrophysics, vol. 54, 2016.
[11] Z. Penoyre, B. P. Moster, D. Sijacki, and S. Genel, “The origin and evolution of fast and slow rotators in the illustris simulation,” Monthly Notices of the Royal Astronomical Society, vol. 468, no. 4, pp. 3883–3906, 2017.
[12] S.l. Li, Y. Shi, Y.M. Chen, M. Tabor, D. Bizyaev, J.h. Chen, X.l. Yu, and L.j. Bing, “An early-type galaxy with an inner starforming disc,” Monthly Notices of the Royal Astronomical Society, vol. 480, no. 2, pp. 1705–1710, 2018.
[13] E. Toloba, A. Boselli, A. Cenarro, R. Peletier, J. Gorgas, A. G. de Paz, and J. C. MuñozMateos, “Formation and evolution of dwarf early-type galaxies in the virgo cluster-i. internal kinematics,” Astronomy and Astrophysics, vol. 526, A114, 2011.
[14] B. Moore, N. Katz, G. Lake, A. Dressler, and A. Oemler, “Galaxy harassment and the evolution of clusters of galaxies,” nature, vol. 379, no. 6566, pp. 613–616, 1996.
[15] D. Bialas, T. Lisker, C. Olczak, R. Spurzem, and R. Kotulla, “On the occurrence of galaxy harassment,” Astronomy and Astrophysics, vol. 576, A103, 2015.
[16] H. C. Ferguson and B. Binggeli, “Dwarf elliptical galaxies,” The Astronomy and Astrophysics Review, vol. 6, no. 12, pp. 67–122, 1994.
[17] T. Cox, S. N. Dutta, T. Di Matteo, L. Hernquist, P. F. Hopkins, B. Robertson, and V. Springel, “The kinematic structure of merger remnants,” The Astrophysical Journal, vol. 650, no. 2, p. 791, 2006.
[18] M. Martig, F. Bournaud, R. Teyssier, and A. Dekel, “Morphological quenching of star formation: Making early-type galaxies red,” The Astrophysical Journal, vol. 707, no. 1, p. 250, 2009.
[19] E. F. Bell, T. Naab, D. H. McIntosh, R. S. Somerville, J. A. Caldwell, M. Barden, C. Wolf, H.W. Rix, S. V. Beckwith, A. Borch, et al., “Dry mergers in gems: The dynamical evolution of massive early-type galaxies,” The Astrophysical Journal, vol. 640, no. 1, p. 241, 2006.
[20] M. Bois, F. Bournaud, E. Emsellem, K. Alatalo, L. Blitz, M. Bureau, M. Cappellari, R. Davies, T. Davis, P. De Zeeuw, et al., “Formation of slowly rotating early-type galaxies via major mergers: A resolution study,” Monthly Notices of the Royal Astronomical Society, vol. 406, no. 4, pp. 2405– 2420, 2010.
[21] H. Fu, A. Cooray, C. Feruglio, R. Ivison, D. Riechers, M. Gurwell, R. Bussmann, A. Harris, B. Altieri, H. Aussel, et al., “The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3,” Nature, vol. 498, no. 7454, pp. 338–341, 2013.
[22] B. Binggeli, “On the intrinsic shape of elliptical galaxies,” Astronomy and Astrophysics, vol. 82, pp. 289–294, 1980.
[23] D. Lambas, S. Maddox, and J. Loveday, “On the true shapes of galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 258, no. 2, pp. 404–414, 1992.
[24] T. Kimm and K. Y. Sukyoung, “Intrinsic axis ratio distribution of early-type galaxies from the sloan digital sky survey,” The Astrophysical Journal, vol. 670, no. 2, p. 1048, 2007.
[25] N. D. Padilla and M. A. Strauss, “The shapes of galaxies in the sloan digital sky survey,” Monthly Notices of the Royal Astronomical Society, vol. 388, no. 3, pp. 1321–1334, 2008.
[26] S. Rodrı́guez and N. D. Padilla, “The intrinsic shape of galaxies in sdss/galaxy zoo,” Monthly Notices of the Royal Astronomical Society, vol. 434, no. 3, pp. 2153–2166, 2013.
[27] B. Joachimi, M. Cacciato, T. D. Kitching, A. Leonard, R. Mandelbaum, B. M. Schäfer, C. Sifón, H. Hoekstra, A. Kiessling, D. Kirk, et al., “Galaxy alignments: An overview,” Space Science Reviews, vol. 193, no. 14, pp. 1–65, 2015.
[28] T. Goto, C. Yamauchi, Y. Fujita, S. Okamura, M. Sekiguchi, I. Smail, M. Bernardi, and P. L. Gomez, “The morphology—density relation in the sloan digital sky survey,” Monthly Notices of the Royal Astronomical Society, vol. 346, no. 2, pp. 601–614, 2003.
[29] C. Park, Y.Y. Choi, M. S. Vogeley, J. R. Gott III, M. R. Blanton, S. Collaboration, et al., “Environmental dependence of properties of galaxies in the sloan digital sky survey,” The Astrophysical Journal, vol. 658, no. 2, p. 898, 2007.
[30] M. Cappellari, E. Emsellem, D. Krajnović, R. M. McDermid, P. Serra, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Bureau, et al., “The atlas3d project–vii. a new look at the morphology of nearby galaxies: The kinematic morphology–density relation,” Monthly Notices of the Royal Astronomical Society, vol. 416, no. 3, pp. 1680–1696, 2011.
[31] C. P. Ahn, R. Alexandroff, C. A. Prieto, S. F. Anderson, T. Anderton, B. H. Andrews, É. Aubourg, S. Bailey, E. Balbinot, R. Barnes, et al., “The ninth data release of the sloan digital sky survey: First spectroscopic data from the sdss-iii baryon oscillation spectroscopic survey,” The Astrophysical Journal Supplement Series, vol. 203, no. 2, p. 21, 2012.
[32] G. de Vaucouleurs, “Recherches sur les nebuleuses extragalactiques,” in Annales d’Astrophysique, vol. 11, 1948, p. 247.
[33] C.Y. Chen, C.Y. Hwang, and C.M. Ko, “Ellipticities of elliptical galaxies in different environments,” The Astrophysical Journal, vol. 830, no. 2, p. 123, 2016.
[34] E. F. Bell, D. H. McIntosh, N. Katz, and M. D. Weinberg, “The optical and near-infrared properties of galaxies. i. luminosity and stellar mass functions,” The Astrophysical Journal Supplement Series, vol. 149, no. 2, p. 289, 2003.
[35] S. Van den Bergh, “Lenticular galaxies and their environments,” The Astrophysical Journal, vol. 702, no. 2, p. 1502, 2009.
[36] F. Kuehn and B. S. Ryden, “Dependence of galaxy shape on environment in the sloan digital sky survey,” The Astrophysical Journal, vol. 634, no. 2, p. 1032, 2005.
[37] G. Fasano, D. Bettoni, B. Ascaso, G. Tormen, B. Poggianti, T. Valentinuzzi, M. D’Onofrio, J. Fritz, A. Moretti, A. Omizzolo, et al., “The shapes of bcgs and normal ellipticals in nearby clusters,” Monthly Notices of the Royal Astronomical Society, vol. 404, no. 3, pp. 1490–1504, 2010.
[38] T. Naab and A. Burkert, “Statistical properties of collisionless equal- and unequal-mass merger remnants of disk galaxies,” The Astrophysical Journal, vol. 597, no. 2, p. 893, 2003.
[39] A. C. GonzálezGarcı́a and M. Balcells, “Elliptical galaxies from mergers of discs,” Monthly Notices of the Royal Astronomical Society, vol. 357, no. 2, pp. 753–772, 2005.
[40] J. M. Lotz, P. Jonsson, T. Cox, and J. R. Primack, “Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers,” Monthly Notices of the Royal Astronomical Society, vol. 391, no. 3, pp. 1137–1162, 2008.
[41] J. Ruel, G. Bazin, M. Bayliss, M. Brodwin, R. Foley, B. Stalder, K. Aird, R. Armstrong, M. Ashby, M. Bautz, et al., “Optical spectroscopy and velocity dispersions of galaxy clusters from the spt-sz survey,” The Astrophysical Journal, vol. 792, no. 1, p. 45, 2014.
[42] M. J. Pereira and G. L. Bryan, “Tidal torquing of elliptical galaxies in cluster environments,” The Astrophysical Journal, vol. 721, no. 2, p. 939, 2010.
[43] J. Binney, “On the rotation of elliptical galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 183, no. 3, pp. 501–514, 1978.
[44] B. Tremblay and D. Merritt, “The frequency function of elliptical galaxy intrinsic shapes,” The Astronomical Journal, vol. 110, p. 1039, 1995.
[45] A. J. Ruff, R. Gavazzi, P. J. Marshall, T. Treu, M. W. Auger, and F. Brault, “The sl2s galaxy-scale lens sample. ii. cosmic evolution of dark and luminous mass in early-type galaxies,” The Astrophysical Journal, vol. 727, no. 2, p. 96, 2011.
[46] A. J. Romanowsky, N. G. Douglas, M. Arnaboldi, K. Kuijken, M. R. Merrifield, N. R. Napolitano, M. Capaccioli, and K. C. Freeman, “A dearth of dark matter in ordinary elliptical galaxies,” Science, vol. 301, no. 5640, pp. 1696–1698, 2003.
[47] R. Sanders, “A dearth of dark matter in strong gravitational lenses,” Monthly Notices of the Royal Astronomical Society, vol. 439, no. 2, pp. 1781–1786, 2014.
[48] J. F. Navarro, C. S. Frenk, and S. D. White, “A universal density profile from hierarchical clustering,” The Astrophysical Journal, vol. 490, no. 2, p. 493, 1997.
[49] S. Courteau and A. A. Dutton, “On the global mass distribution in disk galaxies,” The Astrophysical Journal Letters, vol. 801, no. 2, p. L20, 2015.
[50] R. Wojtak and G. A. Mamon, “Physical properties underlying observed kinematics of satellite galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 428, no. 3, pp. 2407–2417,
2013.
[51] A. Dekel, F. Stoehr, G. Mamon, T. Cox, G. Novak, and J. Primack, “Lost and found dark matter in elliptical galaxies,” Nature, vol. 437, no. 7059, pp. 707–710, 2005.
[52] D. A. Forbes, A. Alabi, A. J. Romanowsky, J. P. Brodie, J. Strader, C. Usher, and V. Pota, “The sluggs survey: Globular clusters and the dark matter content of early-type galaxies,” Monthly Notices
of the Royal Astronomical Society: Letters, vol. 458, no. 1, pp. L44–L48, 2016.
[53] A. B. Alabi, D. A. Forbes, A. J. Romanowsky, J. P. Brodie, J. Strader, J. Janz, V. Pota, N. Pastorello, C. Usher, L. R. Spitler, et al., “The sluggs survey: The mass distribution in early-type
galaxies within five effective radii and beyond,” Monthly Notices of the Royal Astronomical Society, vol. 460, no. 4, pp. 3838–3860, 2016.
[54] A. B. Alabi, D. A. Forbes, A. J. Romanowsky, J. P. Brodie, J. Strader, J. Janz, C. Usher, L. R. Spitler, S. Bellstedt, and A. FerréMateu, “The sluggs survey: Dark matter fractions at large radii
and assembly epochs of early-type galaxies from globular cluster kinematics,” Monthly Notices of the Royal Astronomical Society, vol. 468, no. 4, pp. 3949–3964, 2017.
[55] T. A. McKay, E. S. Sheldon, D. Johnston, E. K. Grebel, F. Prada, H.W. Rix, N. A. Bahcall, J. Brinkmann, I. Csabai, M. Fukugita, et al., “Dynamical confirmation of sloan digital sky survey weak-lensing scaling laws,” The Astrophysical Journal Letters, vol. 571, no. 2, p. L85, 2002.
[56] S. More, F. C. van den Bosch, M. Cacciato, R. Skibba, H. Mo, and X. Yang, “Satellite kinematics–iii. halo masses of central galaxies in sdss,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 1, pp. 210–226, 2011.
[57] J. U. Lange, F. C. van den Bosch, A. R. Zentner, K. Wang, and A. S. Villarreal, “Updated results on the galaxy–halo connection from satellite kinematics in sdss,” Monthly Notices of the Royal Astronomical Society, vol. 487, no. 3, pp. 3112–3129, 2019.
[58] T. G. Brainerd and M. A. Specian, “Masstolight ratios of 2df galaxies,” The Astrophysical Journal Letters, vol. 593, no. 1, p. L7, 2003.
[59] F. Prada, M. Vitvitska, A. Klypin, J. A. Holtzman, D. J. Schlegel, E. K. Grebel, H.W. Rix, J. Brinkmann, T. McKay, and I. Csabai, “Observing the dark matter density profile of isolated galaxies,” The Astrophysical Journal, vol. 598, no. 1, p. 260, 2003.
[60] C. Conroy, F. Prada, J. A. Newman, D. Croton, A. L. Coil, C. J. Conselice, M. C. Cooper, M. Davis, S. Faber, B. F. Gerke, et al., “Evolution in the halo masses of isolated galaxies between z~1 and z~0: From deep2 to sdss,” The Astrophysical Journal, vol. 654, no. 1, p. 153, 2007.
[61] R. B. Tully, L. Rizzi, E. J. Shaya, H. M. Courtois, D. I. Makarov, and B. A. Jacobs, “The extragalactic distance database,” The Astronomical Journal, vol. 138, no. 2, p. 323, 2009.
[62] R. B. Tully, “Galaxy groups: A 2mass catalog,” The Astronomical Journal, vol. 149, no. 5, p. 171, 2015.
[63] G. Gavazzi, D. Pierini, and A. Boselli, “The phenomenology of disk galaxies.,” Astronomy and Astrophysics, vol. 312, pp. 397–408, 1996.
[64] S. S. McGaugh and J. M. Schombert, “Color-mass-to-light-ratio relations for disk galaxies,” The Astronomical Journal, vol. 148, no. 5, p. 77, 2014.
[65] A. Boselli, L. Cortese, M. Boquien, S. Boissier, B. Catinella, C. Lagos, and A. Saintonge, “Cold gas properties of the herschel reference survey-ii. molecular and total gas scaling relations,” Astronomy and Astrophysics, vol. 564, A66, 2014.
[66] D. J. Campbell, C. S. Frenk, A. Jenkins, V. R. Eke, J. F. Navarro, T. Sawala, M. Schaller, A. Fattahi, K. A. Oman, and T. Theuns, “Knowing the unknowns: Uncertainties in simple estimators of galactic dynamical masses,” Monthly Notices of the Royal Astronomical Society, vol. 469, no. 2, pp. 2335–2360, 2017.
[67] A. NigocheNetro, G. RamosLarios, P. Lagos, E. De la Fuente, A. RuelasMayorga, J. MendezAbreu, S. Kemp, and R. Diaz, “The quantity of dark matter in early-type galaxies and its relation to the environment,” Monthly Notices of the Royal Astronomical Society, vol. 488, no. 1, pp. 1320–1331, 2019.
[68] V. C. Rubin, “The rotation of spiral galaxies,” Science, vol. 220, no. 4604, pp. 1339–1344, 1983.
[69] S. Khalil and C. Munoz, “The enigma of the dark matter,” Contemporary physics, vol. 43, no. 2, pp. 51–61, 2002.
[70] S. Courteau, M. Cappellari, R. S. de Jong, A. A. Dutton, E. Emsellem, H. Hoekstra, L. Koopmans, G. A. Mamon, C. Maraston, T. Treu, et al., “Galaxy masses,” Reviews of Modern Physics, vol. 86, no. 1, p. 47, 2014.
[71] C.Y. Chen and C.Y. Hwang, “Dynamics of companion galaxies of early-type galaxies,” The Astrophysical Journal, vol. 903, no. 1, p. 38, 2020.
[72] R. H. Wechsler and J. L. Tinker, “The connection between galaxies and their dark matter halos,” Annual Review of Astronomy and Astrophysics, vol. 56, pp. 435–487, 2018.
[73] D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tittley, “The nongravitational interactions of dark matter in colliding galaxy clusters,” Science, vol. 347, no. 6229, pp. 1462–1465, 2015.
[74] J. Hills, “Encounters between binary and single stars and their effect on the dynamical evolution of stellar systems,” The Astronomical Journal, vol. 80, pp. 809–825, 1975.
[75] C.W. Chen, P. Côté, A. A. West, E. W. Peng, and L. Ferrarese, “Homogeneous ugriz photometry for acs virgo cluster survey galaxies: A nonparametric analysis from sdss imaging,” The Astrophysical Journal Supplement Series, vol. 191, no. 1, p. 1, 2010.
[76] M. Cappellari, R. M. McDermid, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Bureau, A. F. Crocker, R. L. Davies, T. A. Davis, et al., “Systematic variation of the stellar initial mass function in early-type galaxies,” Nature, vol. 484, no. 7395, pp. 485–488, 2012.
[77] M. Cappellari, N. Scott, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Bureau, A. F. Crocker, R. L. Davies, T. A. Davis, et al., “The atlas3d project–xv. benchmark for early-type galaxies scaling relations from 260 dynamical models: Masstolight ratio, dark matter, fundamental plane and mass plane,” Monthly Notices of the Royal Astronomical Society, vol. 432, no. 3, pp. 1709–1741, 2013.
[78] E. Emsellem, D. Krajnović, and M. Sarzi, “A kinematically distinct core and minor-axis rotation: The muse perspective on m87,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 445, no. 1, pp. L79–L83, 2014.
[79] A. NigocheNetro, A. RuelasMayorga, P. Lagos, G. RamosLarios, C. Kehrig, S. Kemp, A. MonteroDorta, and J. GonzálezCervantes, “How much dark matter is there inside early-type galaxies?” Monthly Notices of the Royal Astronomical Society, vol. 446, no. 1, pp. 85–103, 2015.
[80] A. NigocheNetro, G. RamosLarios, P. Lagos, A. RuelasMayorga, E. de la Fuente, S. Kemp, S. Navarro, L. Corral, and A. HidalgoGámez, “Dark matter inside early-type galaxies as function of mass and redshift,” Monthly Notices of the Royal Astronomical Society, vol. 462, no. 1, pp. 951–959, 2016.
[81] S. Lim, H. Mo, Y. Lu, H. Wang, and X. Yang, “Galaxy groups in the low-redshift universe,” Monthly Notices of the Royal Astronomical Society, vol. 470, no. 3, pp. 2982–3005, 2017.
[82] J. Schaye, R. A. Crain, R. G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla Vecchia, C. S. Frenk, I. McCarthy, J. C. Helly, et al., “The eagle project: Simulating the evolution and assembly of galaxies and their environments,” Monthly Notices of the Royal Astronomical Society, vol. 446, no. 1, pp. 521–554, 2015.
[83] R. A. Crain, J. Schaye, R. G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla Vecchia, C. S. Frenk, I. G. McCarthy, J. C. Helly, et al., “The eagle simulations of galaxy formation: Calibration of subgrid physics and model variations,” Monthly Notices of the Royal Astronomical Society, vol. 450, no. 2, pp. 1937–1961, 2015.
[84] S. McAlpine, J. C. Helly, M. Schaller, J. W. Trayford, Y. Qu, M. Furlong, R. G. Bower, R. A. Crain, J. Schaye, T. Theuns, et al., “The eagle simulations of galaxy formation: Public release of halo and galaxy catalogues,” Astronomy and Computing, vol. 15, pp. 72–89, 2016.
[85] G. Chabrier, “Galactic stellar and substellar initial mass function,” Publications of the Astronomical Society of the Pacific, vol. 115, no. 809, p. 763, 2003.
[86] G. Bruzual and S. Charlot, “Stellar population synthesis at the resolution of 2003,” Monthly Notices of the Royal Astronomical Society, vol. 344, no. 4, pp. 1000–1028, 2003.
[87] J. Binney and S. Tremaine, Galactic dynamics. Princeton Univ. Press, 2008.
[88] J. U. Lange, F. C. van den Bosch, A. R. Zentner, K. Wang, and A. S. Villarreal, “Maturing satellite kinematics into a competitive probe of the galaxy–halo connection,” Monthly Notices of the Royal Astronomical Society, vol. 482, no. 4, pp. 4824–4845, 2019.