| 研究生: |
段維杰 Wei-Cheh Tuan |
|---|---|
| 論文名稱: |
Galectin-1蛋白促進老鼠軟骨細胞於幾丁聚醣修飾之聚乳酸-聚乙酸醇共聚物支架生長之研究 Galectin-1 Stimulates Immortal Rat Chondrocyte Proliferation on the Surface of Chitosan-coated PLGA Scaffold |
| 指導教授: |
黃榮南
Rong-Nan Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 幾丁聚醣 、聚乳酸-聚乙酸醇 、軟骨細胞 、組織工程 |
| 外文關鍵詞: | chitosan, PLGA, chondrocyte, galectin-1, tissue engineering |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
組織工程研究組織與器官之再生與形成,利用材料科學與生物科技,在一個模仿組織與器官形狀的材料中植入細胞,使細胞依著模型來長成新的組織與器官,以供修復人體缺損。目前廣泛使用之生醫材料聚乳酸-聚乙酸醇【polylactide- co-glycolide (PLGA)】可藉由新的機械製程-熱融熔成型法製備成具有精確孔洞大小、分佈均勻之立體支架。本研究利用幾丁聚醣披覆於PLGA支架上(chitosan-PLGA),再利用Galectin-1(GAL1)與PLGA支架上之幾丁聚醣結合,作為軟骨細胞生長之支架(GAL1-chitosan-PLGA)。實驗結果發現幾丁聚醣披覆可有效增加PLGA支架之膨潤度及吸水性,顯示幾丁聚醣披覆可降低PLGA支架表面疏水性質;結果也顯示GAL1蛋白能自動吸附於chitosan-PLGA立體支架上,並促進老鼠軟骨細胞IRC生長於chitosan-PLGA支架,於GAL1- chitosan-PLGA支架上之細胞外觀較偏圓形且易聚集生長,而GAL1蛋白促使細胞貼附後一小時造成ERK磷酸化能力降低。GAL1蛋白促進細胞於chitosan-PLGA支架增生能力會因細胞酪胺酸磷酸化大量表現而加速,然而當絲胺酸/息寧胺酸的磷酸化被抑制,細胞存活和促進增生作用會被明顯抑制。本實驗證實幾丁聚醣及GAL1蛋白結合PLGA之立體支架可有效促使軟骨細胞之貼附及生長,可應用作為軟骨組織工程的生物因子。
Tissue engineering employs the principles and methods of engineering and life sciences toward fundamental understanding of structure function relationship in normal and pathological mammalian tissues as well as the development of biological substitutes for the repair or regeneration of tissue or organ function. The widespread biomaterial polylactide-co-glycolide (PLGA) could fabricate by new condition mechanical system of rapid prototyping system prepared the 3D biocompatible scaffold with the advantage of precise pore size and distribute higher characteristic. In this study, we investigated the application of chitosan- and GAL1-modified PLGA in tissue engineering. The results show that the appearance of chitosan modified PLGA scaffold was extensively expansive than PLGA after immersing on ddH2O for 2 weeks and water absorption ratio was also 70% higher than PLGA . This result indicated that the chitosan-modified PLGA would be more hydrophilic than PLGA itself. Experimental results also showed that GALl can be efficiently and spontaneously coat on the surface of chitosan-PLGA scaffold to promote the adhesion and proliferation of IRC cells. IRC adhesion and proliferation on GAL1-chitosn- PLGA scaffold was dose-dependently inhibited by the presence of TDG (the specific inhibitor of galectin on CRD). These results strongly suggested that GAL1 plays a critical role in enhancing IRC cells adhesion on chitosan-PLGA scaffold. IRC growing on GAL-chitosan-PLGA tend to form cell-cell aggregation on the surface, an indicating of tissue differentiation. In addition, level of ERK phosphorylation were inhibited 1 hr after IRC cultured on GAL1-chitosan-PLGA scaffold. The adhesion and proliferation of IRC on GAL1-chitosan-PLGA scaffold were enhanced by tyrosine phosphorylation, but attenuated by serine/threonine phosphorylation. In conclusion, the present results suggest that both chitosan and GAL1 play important role in enhancing IRC cell adhesion and proliferation on PLGA scaffold, and GAL1-potentiated cell adhesion and/or proliferation might associate with cellular phosphorylation.
REFERENCE
Agrawal, C.M., Niederauer, G., Micallef, D., and Athanasiou, K. (1995). The use of PLA, PGA polymers in orthopaedics. In: Wise D, editor. Encyclopedic handbook of biomaterials and bioengineering. New York: Marcel Dekker, 2081-2115.
Ahmed, H., Allen, H.J., Sharma, A., and Matta, K.L. (1990). Human splenic galaptin: carbohydrate-binding specificity and characterization of the combining site. Biochemistry. 29, 5315-5319.
Akiyama, S.K., Yamada, S.S., and Chen, W.T., Yamada, K.M. (1989). Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol. 109, 863-875.
Athanasiou, K.A., Niederauer, G.G., and Agrawal, C.M. (1996). Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 17, 93-102.
Aulthouse, A.L., and Solursh, M. (1987). The detection of a precartilage, blastema-specific marker. Dev Biol. 120, 377-384.
Barondes, S.H., Cooper, D.N.W., Gitt, M.A., and Leffler, H. (1994). Galectins: Structure and function of a large family of animal lectins. J. Biol Chem. 269, 20807-20810.
Belot, N., Rorive, S., Doyen, I., Lefranc, F., Bruyneel, E., Dedecker, R., Micik, S., Brotchi, J., Decaestecker, C., Salmon, I., Kiss, R., and Camby, I. (2001). Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia. 36, 375-390.
Bianchet, M.A., Ahmed, H., Vasta, G.R., and Amzel, L.M. (2000). Soluble b-galatosyl-binding lectin (galectin) from toad ovary: crystalographic studies of two protein-sugar complexes. Proteins. 40, 378-388.
Buckwalter, J.A., and Mankin, H.J. (1997). Articular cartilage Part II: degeneration and osteoarthrosis, repair, regeneration, and transplantation. J. Bone Jt Surg. 79-A, 612-632.
Chandy, T., and Sharma, C.P. (1990). Chitosan - as a biomaterial. Biomater Artif Cell Artif Org. 18, 1-24.
Chang, C., Lauffenburger, D.A., and Morales, T.I. (2003). Motile chondrocytes from newborn calf: migration properties and synthesis of collagen II. Osteoarthritis Cartilage. 11, 603-612.
Chang, S.H. (2000). The Study of poly(a-hydroxy) esters scaffolds modified by type II collagen for cartilage repair. Nation Chung-Hsing University, Department of Chemical Engineering Master Thesis.
Chang, Y.Y., Chen, S.J., Liang, H.C., Sung, H.W., Lin, C.C., and Huang, R.N. (2004). The effect of galectin 1 on 3T3 cell proliferation on chitosan membranes. Biomaterials. 25, 3603-3611.
Chen, Q., Kinch, M.S., Lin, T.H., Burridge, K., and Juliano, R.L. (1994). Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem. 269, 26602-26605.
Chu, C.R., Coutts, R.D., Yoshioka, M., Harwood, F.L., Monosov, A.Z., and Amiel, D. (1995). Articular cartilage repair using allogenic perichondrocyte- seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res. 29, 1147-1154.
Clark, E.A., and Hynes, R.O. (1996). Ras activation is necessary for integrin- mediated activation of extracellular signal-regulated kinase 2 and cytosolic phospholipase A2 but not for cytoskeletal organization. J Biol Chem. 271, 14814-14818.
Clark, E.A., Shatti, S.J., and Brugge, R.L. (1994). Regulation of protein tyrosine kinases in platelets. Trends Biochem. Sci. 19, 464-469.
Cobb, M.H., Xu, S., Hepler, J.E., Hutchison, M., Frost, J., and Robbins, D.J. (1994). Regulation of the MAP kinase cascade. Cell Mol Biol Res. 40, 253-256.
Cooper, D.N., Massa, S.M., and Barondes, S.H. (1991). Endogenous muscle lectin inhibits myoblast adhesion to laminin. J Cell Biol. 115, 1437-1448.
Cooper, D.N.W., and Barondes, S.H. (1991). Evidence for the export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J. Cell Biol. 110, 1681-1691.
Cui, Y.L., Qi, A.D., Liu, W.G., Wang, X.H., Wang, H., Ma, D.M., and Yao, K.D. (2003). Biomimetic surface modification of poly (L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials. 24, 3859-3868.
Dee, K.C., Puleo, D.A., and Bizios, R. (2002b). An Introduction to Tissue- Biomaterial Interactions, 169-171.
Denuziere, A., Ferrier, D., Damour, O., and Domard, A. (1998). Chitosan- chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: Biological properties. Biomaterials. 19, 1275-1285.
Donald, L.W. (2000). Biomaterial and bioengineering handbook. Dekker. 27, 618-658.
Donati, I., Stredanska, S., Silvestrini, G., Vetere, A., Marcon, P., Marsich, E., Mozetic, P., Gamini, A., Paoletti, S., and Vittur, F. (2004). The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials., In press.
Enomoto-Iwamoto, M., Iwamoto, M., Nakashima, K., Mukudai, Y., Boettiger, D., Pacifici, M., Kurisu, K., and Suzuki, F. (1997). Involvement of alpha5beta1 integrin in matrix interactions and proliferation of chondrocytes. J Bone Miner Res. 12, 1124-1132.
ExPASy Molecular Biology Server, http://tw.expasy.org/tools/pi_tool.html.
Freed, L.E., Marquis, J.C., Nohria, A., Emmanual, J., Mikos, A.G., and Langer, R. (1993). Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 27, 11-23.
Giancotti, F.G., and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028 -1032.
Gotoh, Y., and Nishida, E. (1995). Activation mechanism and function of the MAP kinase cascade. Mol Reprod Dev. 42, 486-492.
Grande, D.A., Halberstadt, C., Naughton, G., Schwartz, R., and Ryhana, M. (1997). Evaluation of matrix scaffolds for the tissue engineering of articular cartilage grafts. In J Biomed Mater Res, pp. 211-220.
Green, W.T.J. (1977). Articular cartilage repair. Behavior of rabbit chondrocytes during tissue culture and subsequent allografting. Clin Orthop. 124, 237-250.
Guan, K.L. (1994). The mitogen activated protein kinase signal transduction pathway: From the cell surface to the nucleus. Cell Signal. 6, 581-589.
Gumbiner, B.M. (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 84, 345-357.
Halbrecht, L. (2004). Institute for Arthroscopy and Sports Medicine, http://www. iasm.com/.
Hirabayashi, J., and Kasai, K. (1993). The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology. 3, 297-304.
Hollinger, J.O., and Battistone, G.C. (1986). Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin Orthop. 207, 290-305.
Hsu, S.H., Tsai, C.L., and Tang, C.M. (2002). Evaluation of cellular affinity and compatibility to biodegradable polyesters and type-II collagen-modified scaffolds using immortalized rat chondrocytes. Artificial Organs. 26, 647-658.
Hutmacher, D.W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials. 21, 2529-2543.
Hutmacher, D.W., Schantz, T., and Zein, I. (2001). Mechanical properties and pell pultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 55, 203-216.
Jackson, D.N., and Foster, D.A. (2004). The enigmatic protein kinase C: complex roles in cell proliferation and survival. FASEB J. 18, 627-636.
Jeschke, B., Meyer, J., Jonczyk, A., Kessler, H., Adamietz, P., Meenen, N.M., Kantlehner, M., Goepfert, C., and Nies, B. (2002). RGD-peptides for tissue engineering of articular cartilage. Biomaterials. 23, 3455-3463.
Johnna, J.S., and Mikos, A.G. (2000). Review: tissue engineering for regeneration of articular cartilage. Biomaterials. 21, 431-440.
Johnson, G.L., and Vaillancourt, R.R. (1994). Sequential protein kinase reactions controlling cell growth and differentiation. Curr. Opin. Cell Biol. 6, 230-238.
Joon, B.P., and Joseph, D.B. (2003). Biomaterials: priciples and application. CRC PRESS 5, 95-107.
Kaltner, H., Seyrek, K., Heck, A., Sinowatz, F., and Gabius, H.J. (2002). Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Comparison of cell type-specific expression profiles and subcellular localization. Cell Tissue Res. 307, 35-46.
Kawashima, H., Sueyoshi, S., Li, H., Yamamoto, K., and Osawa, T. (1990). Carbohydrate binding specificities of several poly-N-acetyllactosamine- binding lectins. Glycoconj J. 7, 323-334.
Kim, S.J., Kim, H.G., Oh, C.D., Hwang, S.G., Song, W.K., Yoo, Y.J., Kang, S.S., and Chun, J.S. (2002). p38 kinase-dependent and -independent Inhibition of protein kinase C zeta and -alpha regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J Biol Chem. 277, 30375-30381.
Lahiji, A., Sohrabi, A., Hungerford, D.S., and Frondoza, C.G. (2000). Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res. 51, 586-595.
Langer, R., and Vacanti, J.P. (1993). Tissue engineering. Science. 260, 920-926.
Lanza, R.P., Langer, R., and Vacanti, J. (1999). Principle of tissue engineering 2nd. Academic Press, Tokyo, samDiego, 671-682.
LeBaron, R.G., and Athanasiou, K.A. (2000). Ex vivo synthesis of articular cartilage. Biomaterials. 21, 2575-2587.
Leonadis, D.D., Elbert, B.L., Zhou, Z., Leffler, H., Ackerman, S.J., and Acharya, K.R. (1995). Crystal structure of human Charcot-Leyden crystal protein, an eosinpphil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins. Structure. 3, 1379-1393.
Levi, G., Tarrab-Hazdai, R., and Teichberg, V.I. (1983). Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbit. Eur J Immunol. 13, 500-507.
Levy, Y., Arbel-Goren, R., Hadari, Y.R., Eshhar, S., Ronen, D., Elhanany, E., Geiger, B., and Zick, Y. (2001). Galectin-8 functions as a matricellular modulator of cell adhesion. J Biol Chem. 276, 31285-31295.
Lewandrowski, K.U. (2002). Tissue engineering and biodegradable equivalents : scientific and clinical applications. New York : M. Dekker.
Lobsanov, Y.D., Gitt, M.A., Leffler, H., Barondes, S.H., and Rini, J.M. (1993). X-ray crystal structure of the human dimeric S-Lac lectin, L-14-II, in complex with lactose at 2.9-A resolution. J. Biol Chem. 268, 27034-27038.
Lu, H.T. (2001). Fabrication of Precision Scaffold for Tissue Engineering. National Central University, Department of Mechanical Engineering Master Thesis.
Lu, J.X., Prudhommeaux, F., Meunier, A., Sedel, L., and Guillemin, G. (1999). Effects of chitosan on rat knee cartilages. Biomaterials. 20, 1937-1944.
Maeda, N., Kawada, N., Seki, S., Arakawa, T., Ikeda, K., Iwao, H., Okuyama, H., Hirabayashi, J., Kasai, K., and Yoshizato, K. (2003). Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J Biol Chem. 278, 18938-18944.
Maguire, J.K., Coscia, M.F., and Lynch, M.H. (1987). Foreign body reaction to polymeric debris following total hip arthroplasty. Clin Orthop. 216, 213-223.
Mahanthappa, N.K., Cooper, D.N.W., Barondes, S.H., and Schwarting, G. (1994). Rat olfactory neurins can utilize the endogenous lectin, L-14, in a novel adhesion mechanism. Development. 120, 1373-1384.
Manabu, M., Shuichi, O., and Noriyuki, S. (2000). Protein kinase C isoforms - cell proliferation and Apoptosis. Int J Hematol. 72, 12-19.
Maniwa, S., Ochi, M., Motomura, T., Nishikori, T., Chen, J., and Naora, H. (2001). Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Cell Struct Funct. 22, 309-315.
Marcon, P., Marsich, E., Vetere, A., Mozetic, P., Campa, C., Donati, I., Vittur, F., Gamini, A., and Paoletti, S. (2004). Galectin-1 mediates interaction between chondrocytes and lactose-modified chitosan. Biochem J., in press.
Mi, F.L., Shyu, S.S., Wu, Y.B., Lee, S.T., Shyong, J.Y., and Huang, R.N. (2001). Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials. 22, 165-173.
Minami, S., Okamoto, Y., and Tanioka, S. (1993). Effects of chitosan on wound healing. In: Yalpani M , editor. Carbohydrates and carbohydrate polymers. Shrewsbury, MA: ATL Press, 141-152.
Miyamoto, S., Teramoto, H., Gutkind, J.S., and Yamada, K.M. (1996). Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: Roles of integrin aggregation and occupancy of receptors. J Cell Biol. 135, 1633-1642.
Moiseeva, E.P., Spring, E.L., Baron, J.H., and de Bono, D.P. (1999). Galectin-1 modulates attachment, spreading and migration of cultured vascular smooth muscle cells via interactions with cellular receptors and components of extracellular matrix. J Vasc Res. 36, 47-58.
Moiseeva, E.P., Javed, Q., Spring, E.L., and de Bono, D.P. (2000). Galectin-1 is involved in vascular smooth muscle cell proliferation. Cardiovasc. Res. 45, 493-502.
Norris, D.A., Puri, N., Labib, M.E., and Sinko, P.J. (1999). Determining the absolute surface hydrophobicity of microparticulates using thin layer wicking. J. Controlled Release. 59, 173-185.
Oberlender, S.A., and Tuan, R.S. (1994). Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development. 120, 177-187.
Oda, Y., and Kasai, K. (1984). Photochemical cross-linking of beta-galactoside- binding lectin to polylactosamino-proteoglycan of chick embryonic skin. Biochem Biophys Res Commun. 123, 1215-1220.
Offner, H., Celnik, B., Bringman, T.S., Casentini-Borocz, D., Nedwin, G.E., and Vandenbark, A.A. (1990). Recombinant human beta-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J Neuroimmunol. 28, 177-184.
Oh, C.D., Chang, S.H., Yoon, Y.M., Lee, S.J., Lee, Y.S., Kang, S.S., and Chun, J.S. (2000). Opposing role of mitogen-activated protein kinase subtypes, ERK-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J Biol Chem. 275, 5613-5619.
Perillo, N.L., Marcus, M.E., and Baum, L.G. (1998). Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J. Mol. Med. 76, 402-412.
Pierschbacher, M.D., and Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30-33.
Renshaw, M.W., Ren, X.D., and Schwartz, M.A. (1997). Growth factor activation of MAP kinase requires cell adhesion. EMBO J. 16, 5592–5599.
Ross, M.H., and Romrell, L.J. (1996). Histology: a text and atlas. Lippincott Williams and Wilkins, Filadelfia.
Sanford, G.L., and Harris-Hooker, S.A. (1990). Stimulation of vascular cell proliferation by β-galactoside specific lectins. FASEB J. 4, 2912-2918.
Shakibaei, M., Schulze-Tanzil, G., de Souza, P., John, T., Rahmanzadeh, M., Rahmanzadeh, R., and Merker, H.J. (2001). Inhibition of mitogen-activated protein kinase kinase induces apoptosis of human chondrocytes. J Biol Chem. 276, 13289-13294.
Shimizu, M., Minakuchi, K., Kaji, S., and Koga, J. (1997). Chondrocyte migration to fibronectin, type I collagen, and type II collagen. Cell Struct Funct. 22, 309-315.
Siders, W.M., Klimovitz, J.C., and Mizel, S.B. (1993). Characterization of the structural requirements and cell type specificity of IL-1 alpha and IL-1 beta secretion. J. Biol Chem. 268, 22170-22174.
Skalak, R., and Fox, C.F. (1988). Tissue engineering. Granlibakken, Lake Tahoe: Proc wrkshop. New York: Liss, 26-29.
Skrincosky, D.M., Allen, H.J., and Bernacki, R.J. (1993). Galaptin-mediated adhesion of human ovarian carcinoma A121 cells and detection of cellular galaptin-binding glycoproteins. Cuncer Res. 53, 3652.
Sparrow, C.P., Leffler, H., and Barondes, S.H. (1987). Multiple soluble beta-galactoside-binding lectins from human lung. J. Biol Chem. 262, 7383-7390.
Spertini, F., Wang, A.V., Chatila, T., and Geha, R.S. (1994). Engagement of the common leukocyte antigen CD45 induces homotypic adhesion of activated human T cells. J Immunol. 153, 1593-1602.
Stott, N.S., Jiang, T.X., and Chuong, C.M. (1999). Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2. J Cell Physiol. 180, 314-324.
Suh, J.K., and Matthew, H.W. (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 21, 2589-2598.
Takahashi, I., Onodera, K., Sasano, Y., Mizoguchi, I., Bae, J.W., Mitani, H., Kagayama, M., and Mitani, H. (2003). Effect of stretching on gene expression of â1 integrin and focal adhesion kinase and on chondrogenesis through cell-extracellular matrix interactions. Eur J Cell Biol. 82, 182-192.
Tang, C.M. (1998). Fabrication and evaluation of biodegradable polymer scaffolds for chondrocyte seeding. Nation Chung-Hsing University, Department of Chemical Engineering Master Thesis.
Tanioka, S., Okamoto, Y., Minami, S., Matsuhashi, A., Tokura, S., Sashiwa, H., Saimoto, H., and Shigemasa, Y. (1993). Development of chitin and chitosan biomaterials. In: Yalpani M , editor. Carbohydrate and carbohydrate polymers. Mount Prospect: ATL Press, 153-164.
Vacanti, C.A., Woo, S.K., Schloo, B., Upton, J., and Vacanti, J.P. (1994). Joint resurfacing with cartilage grown in situ from cell-polymer structures. AJSM. 22, 485-488.
Von Der Mark, K. (1986). Differentiation, mogulation and dedifferentiation of chondrocytes. Rheumatology. 10, 272-315.
Wang, W.C., Lee, N., Aoki, D., Fukuda, M.N., and Fukuda, M. (1991). The poly-N-acetyllactosamines attached to lysosomal membrane glycoproteins are increased by the prolonged association with the golgi complex. J Biol Chem. 266, 23185-23190.
Watt, F.M. (1988). Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci. 89, 373-378.
Whu, S.W. (1997). Poly L-lactic acid scaffold used as repairing cartilage defects. Nation Chung-Hsing University, Department of Chemical Engineering Master Thesis.
Woo, S.K., Vacanti, J.P., Cima, L., Mooney, D., and Upton, J. (1994). Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plastic Reconstr Surg 94, 233-237.
Yamaoka, K., Ohno, S., Kawasaki, H., and Suzuki, K. (1991). Overexpression of a beta-galactoside binding protein causes transformation of BALB3T3 fibroblast cells. Biochem Biophys Res Commun. 179, 272-279.
Yasuda, T., Shimizu, K., Nakagawa, Y., Ishikawa, H., Nishihara, H., and Nakamura, T. (1996). Possible involvement of RGD (Arg-Gly-Asp)- containing extracellular matrix proteins in rat growth plate chondrocyte differentiation in culture. J Bone Miner Res. 11, 1430-1437.
Zhou, Q., and Cummings, R.D. (1993). L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. Arch. Biochem. Biophys 300, 6-17.
Zhu, H., Ji, J., Lin, R., Gao, C., Feng, L., and Shen, J. (2002). Surface engineering of poly(D, L-lactic acid) by entrapment of chitosan-based derivatives for the promotion of chondrogenesis. J Biomed Mater Res 62, 532-539.