跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖秋晴
Chiu-Ching Liao
論文名稱: 苯並咪唑硫醇與咪唑硫醇分子在金(111)上的吸附及其對鎳沉積的影響
指導教授: 姚學麟
Shueh-Lin Yau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 165
中文關鍵詞: 金(111)硫醇分子
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帶有咪唑官能基的有機硫化物已作為緩蝕劑和生物傳感器受到廣泛的研究,然而它們在電化學界面的吸附狀態尚未被充分探討。本研究透過循環伏安法和原位掃描穿隧式顯微鏡技術,探討了咪唑硫醇MMI(2-mercapto-1-methylimidazole)、苯並咪唑硫醇MBIT(1-methyl-1H-benzimidazole-2-thiol)與MMBI(2-mercapto-5-methylbenzimidazole)分子在金(111)電極上的吸附行為與電位、pH值、陰離子的關係。研究結果闡明,在正電位下,分子以非質子化的形式吸附在金表面上, MMI和MBIT以硫和氮端與金電極鍵結,分子解析度的STM分別顯示了有序的陣列結構與特殊蜂窩結構;在負電位下,分子的金-氮鍵斷裂,導致MMI吸附層的無序化,而MBIT和MMBI以π-π 相互作用力緊密排列,吸附層重組為相似的有序線條結構,此結構重組過程與咪唑官能基的質子化反應密切相關;在更負的電位下,隨著金-硫鍵的斷裂,分子從金表面脫附。由金(111)電極表面的凹洞特徵顯示,分子以典型的硫-金-硫模式吸附於金(111)電極上形成有序結構,而MBIT可能以Au(MBIT)3的模式形成特殊的有序蜂窩結構。此外也觀察到MBIT和MMBI與陰離子的共吸附確實影響了它們的有序吸附結構。
    本研究的第二部份揭示了鎳在金電極上的成核和生長過程,以及硫醇分子對鎳沉積的影響。透過長時間的STM掃描,鎳吸附原子穿透到金電極的最上層進而產生鎳-金混和表面,而在金(111)區域進一步沉積鎳將產生多層的moiré pattern。添加MMI分子使鎳在金表面均勻地成核並提前成核電位,形成了平坦的鎳單層,同時MMI與鎳層結合吸附於表面,最終多層鎳以3D方向生長。循環伏安法的結果顯示,添加MMI對鎳的沉積具有顯著的加速效果,鎳的沉積量和效率皆有明顯地提升,推測MMI分子與Ni2+結合形成Ni(MMI)x2+錯合物,有效地傳輸到金電極上進而促進鎳的沉積。相比之下,由於苯環的貢獻,MBIT和MMBI形成了較疏水的阻擋層,不利於Ni(H2O)62+接近金電極表面,進而抑制了鎳的電沉積。本研究揭示了咪唑硫醇分子在金(111)電極上的吸附狀態及其在鎳電鍍過程中的作用,有助於深入理解有機硫化物在電化學界面上的吸附行為,進而幫助開發新型電鍍劑。


    Organic sulfides with imidazole functional groups have been extensively studied as corrosion inhibitors and biosensors. However, their adsorption behavior at the electrochemical interface remains insufficiently explored. In this study, the adsorption behavior of imidazolethiol and benzimidazolethiol molecules, such as 2-mercapto-1-methylimidazole (MMI), 1-methyl-1H-benzimidazole-2-thiol (MBIT), and 2-Mercapto-5-methylbenzimidazole (MMBI), on a Au(111) electrode was investigated using cyclic voltammetry (CV) and scanning tunneling microscopy (STM). The relationship between the adsorption behavior and factors such as potential, pH, and anions was examined.
    The results elucidated that the adsorbed MMI and MBIT molecule assumed the unprotonated form, allowing its S- and N-ends to bind with the Au electrode at a positive potential, resulting in ordered array structures and a unique honeycomb structure, respectively, as observed through Molecular resolution STM imaging. At negative potentials, the N-Au bond broke, leading to disorder in the MMI adsorption layer. In contrast, MBIT and MMBI closely packed through π-π interactions, resulting in a similar ordered line structure. This restructuring event was coupled with the protonation of the imidazole functional group. At more negative potentials, the S−Au bond broke, causing the molecules to desorb from the Au electrode. The observation of pitted surface morphology on the Au (111) electrode surface indicated that the molecules adsorbed in a typical S-Au-S motif, forming ordered structures. MBIT possibly formed a unique honeycomb structure as Au(MBIT)3. Additionally, the coadsorption of MBIT and MMBI with anions indeed affected their ordered adsorption structures.
    The second part of this study focused on the nucleation and growth process of Ni on the Au electrode and the influence of thiol molecules on Ni deposition. Protracted STM scanning could enable Ni adatoms penetrating the uppermost layer of Au electrode, yielding a Ni-Au mixed surface. Further Ni deposition on the Au(111) domains leads to multilayered moiré patterns. The MMI additive causes uniform Ni nucleation on the Au(111) electrode at a more positive potential than that observed without MMI, forming a smooth Ni adlayer on the Au electrode. Meanwhile, MMI molecules adsorb to the Ni deposit with their –S and –N ends. Bulk Ni deposition with MMI is 3D, resulting in a rolling hill morphology. CV results showed that the addition of MMI significantly accelerated nickel deposition, leading to increased deposition quantity and efficiency. It was speculated that MMI molecules formed Ni(MMI)x2+ complexes, effectively transferred to the Au electrode, and facilitated Ni deposition. In contrast, due to the contribution of the benzene ring, MBIT and MMBI formed hydrophobic barrier layers that hindered the approach of Ni(H2O)62+ to the Au electrode surface, thus suppressing Ni electrodeposition.
    This study provided insights into the adsorption states of imidazolethiol molecules on a Au (111) electrode and their role in the Ni electrodeposition process. It contributes to a better understanding of the adsorption behavior of organic sulfides at the electrochemical interface and can aid in the development of novel electroplating agents.

    摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 ix 表目錄 xv 第一章、緒論 1 1-1 超填孔電鍍 1 1-1-1 超填孔電鍍機制 1 1-1-2 超填孔電鍍添加劑 2 1-2 自主裝單分子膜 4 1-2-1 有機硫醇分子 4 1-2-2 具咪唑(imidazole)官能基的雜環硫醇分子 5 1-3 鎳的電沉積與應用 6 1-3-1 鎳在工業上的應用 6 1-3-2 鎳的電沉積機制 6 1-4 研究動機 9 第二章、實驗部分 10 2-1 藥品 10 2-2 有機硫醇分子結構圖 11 2-3 氣體與線材 12 2-4 儀器設備 13 2-4-1 循環伏安儀(Cyclic Voltammetry, CV) 13 2-4-2 掃描式穿隧電子顯微鏡(Scanning Tunneling Microscopy, STM) 13 2-4-3 超音波振盪器(Ultrasonic cleaner) 14 2-4-4 研磨拋光機(Grinder and Polisher) 14 2-5 實驗步驟 16 2-5-1 金(111)單晶電極製備(使用於CV實驗) 16 2-5-2 金(111)單晶電極製備(使用於STM實驗) 16 2-5-3 STM探針製備 16 2-5-4 循環伏安法(CV)實驗前處理 17 2-5-5 掃描式穿隧電子顯微鏡(STM)實驗前處理 17 第三章、MMI在金(111)電極上的吸附 18 3-1 電位控制與製備條件對MMI吸附結構的影響 18 3-1-1 pH3硫酸鉀溶液中MMI於金(111)上的CV圖 18 3-1-2 MMI修飾於金(111)上的覆蓋度 21 3-1-3 pH3硫酸鉀溶液中MMI吸附於金(111) -重排結構上的STM圖 23 3-1-4 pH3硫酸鉀溶液中MMI吸附於金(111) - (1 × 1)上的STM圖 31 3-2 pH值對MMI吸附結構的影響 34 3-2-1 不同pH值之硫酸/硫酸鉀溶液中MMI於金(111)上的CV圖 34 3-2-2 添加MMI於pH1硫酸溶液中的STM圖 37 3-2-3 添加MMI於pH5硫酸鉀溶液中的STM圖 41 3-3 陰離子對MMI吸附結構的影響 43 3-3-1 0.1M過氯酸溶液中MMI於金(111)上的CV圖 43 3-4 結論 45 第四章、MBIT與MMBI在金(111)電極上的吸附 46 4-1 電位控制與pH值對MBIT吸附結構的影響 46 4-1-1 在pH1硫酸溶液中MBIT修飾於金(111)上的CV圖 46 4-1-2 不同pH值之硫酸/硫酸鉀溶液中MBIT修飾於金(111)上的CV圖 48 4-1-3 添加MBIT於pH1硫酸溶液中的STM圖 50 4-2 陰離子對MBIT吸附結構的影響 56 4-2-1 在0.1M過氯酸/磷酸溶液中MBIT修飾於金(111)上的CV圖 56 4-2-2 添加MBIT於0.1M過氯酸溶液中的STM圖 60 4-2-3 添加MBIT於0.1M磷酸溶液中的STM圖 64 4-3 電位控制與pH值對MMBI吸附結構的影響 69 4-3-1 在pH1硫酸溶液中MMBI修飾於金(111)上的CV圖 69 4-3-2 不同pH值之硫酸/硫酸鉀溶液中MMBI修飾於金(111)上的CV圖 72 4-3-3 添加MMBI於pH1硫酸溶液中的STM圖 74 4-4 陰離子對MMBI吸附結構的影響 80 4-4-1 在0.1M過氯酸/磷酸溶液中MMBI修飾於金(111)上的CV圖 80 4-4-2 添加MMBI於0.1M過氯酸溶液中的STM圖 84 4-4-3 添加MMBI於0.1M磷酸溶液中的STM圖 88 4-5 結論 90 第五章、探討MMI/ MBIT/MMBI分子對鎳沉積的影響 92 5-1 在pH3硫酸鉀溶液中鎳的電沉積 92 5-1-1 在pH3硫酸鉀溶液中鎳沉積之CV圖 92 5-1-2 硫酸鉀濃度對鎳沉積的影響之CV圖 95 5-1-3 在pH3硫酸鉀溶液中鎳沉積之STM圖 97 5-2 pH值對鎳沉積的影響 101 5-2-1 在pH4與pH5硫酸鉀溶液中鎳沉積之CV圖 101 5-3 在pH3硫酸鉀中MMI分子對鎳沉積的影響 105 5-3-1 鎳沉積於MMI修飾的金(111)電極之CV圖 105 5-3-2 添加MMI之硫酸鉀溶液中鎳沉積之CV圖 109 5-3-3 添加MMI之硫酸鉀溶液中鎳沉積之STM圖 113 5-4 在pH3硫酸鉀中MMBI與MBIT分子對鎳沉積的影響 118 5-4-1 鎳沉積於MBIT修飾的金(111)電極之CV圖 118 5-4-2 鎳沉積於MMBI修飾的金(111)電極之CV圖 122 5-5 結論 126 第六章、結論 127 第七章、附錄: 探討MMI分子對鈷沉積的影響 128 7-1 在pH3硫酸鉀溶液中鈷的電沉積 128 7-1-1 在pH3硫酸鉀溶液中鈷沉積之CV圖 128 7-1-2 在pH3硫酸鉀溶液中鈷沉積之STM圖 131 7-2 在pH3硫酸鉀中MMI分子對鈷沉積的影響 135 7-2-1 添加MMI之硫酸鉀溶液中鈷沉積之CV圖 135 7-2-2 添加MMI之硫酸鉀溶液中鈷沉積之STM圖 139 7-3 結論 141 第八章、參考資料 142

    1. Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; Deligianni, H., Damascene copper electroplating for chip interconnections. IBM Journal of Research and Development 1998, 42 (5), 567-574.
    2. Allongue, P.; Cagnon, L.; Gomes, C.; Gündel, A.; Costa, V., Electrodeposition of Co and Ni/Au(111) ultrathin layers. Part I: nucleation and growth mechanisms from in situ STM. Surface Science 2004, 557 (1), 41-56.
    3. Gabrielli, C.; Moçotéguy, P.; Perrot, H.; Nieto-Sanz, D.; Zdunek, A., A model for copper deposition in the damascene process. Electrochimica Acta 2006, 51 (8), 1462-1472.
    4. Broekmann, P.; Fluegel, A.; Emnet, C.; Arnold, M.; Roeger-Goepfert, C.; Wagner, A.; Hai, N. T. M.; Mayer, D., Classification of suppressor additives based on synergistic and antagonistic ensemble effects. Electrochimica Acta 2011, 56 (13), 4724-4734.
    5. Li, Y.-B.; Wang, W.; Li, Y.-L., Adsorption Behavior and Related Mechanism of Janus Green B during Copper Via-Filling Process. Journal of The Electrochemical Society 2009, 156 (4), D119.
    6. Singh, M.; Kaur, N.; Comini, E., The role of self-assembled monolayers in electronic devices. Journal of Materials Chemistry C 2020, 8 (12), 3938-3955.
    7. Guo, Q.; Li, F., Self-assembled alkanethiol monolayers on gold surfaces: resolving the complex structure at the interface by STM. Physical Chemistry Chemical Physics 2014, 16 (36), 19074-19090.
    8. Cui, B.; Chen, T.; Wang, D.; Wan, L.-J., In Situ STM Evidence for the Adsorption Geometry of Three N-Heteroaromatic Thiols on Au(111). Langmuir 2011, 27 (12), 7614-7619.
    9. Poirier, G. E., Coverage-Dependent Phases and Phase Stability of Decanethiol on Au(111). Langmuir 1999, 15 (4), 1167-1175.
    10. Jian, Z.-Y.; Chang, T.-Y.; Yang, Y.-C.; Dow, W.-P.; Yau, S.-L.; Lee, Y.-L., 3-Mercapto-1-propanesulfonic acid and Bis(3-sulfopropyl) Disulfide Adsorbed on Au(111): In Situ Scanning Tunneling Microscopy and Electrochemical Studies. Langmuir 2009, 25 (1), 179-184.
    11. Fernández, C. C.; Pensa, E.; Carro, P.; Salvarezza, R.; Williams, F. J., Electronic Structure of a Self-Assembled Monolayer with Two Surface Anchors: 6-Mercaptopurine on Au(111). Langmuir 2018, 34 (20), 5696-5702.
    12. Djouani, R., Razika Djouani; Qian, X., MECHANISM OF ELECTRODEPOSITION OF NICKEL. International Journal of Current Research 2018.
    13. Möller, F. A.; Kintrup, J.; Lachenwitzer, A.; Magnussen, O. M.; Behm, R. J., In situ STM study of the electrodeposition and anodic dissolution of ultrathin epitaxial Ni films on Au(111). Physical Review B 1997, 56 (19), 12506-12518.
    14. Kitchin, J. R.; Khan, N. A.; Barteau, M. A.; Chen, J. G.; Yakshinskiy, B.; Madey, T. E., Elucidation of the active surface and origin of the weak metal–hydrogen bond on Ni/Pt(111) bimetallic surfaces: a surface science and density functional theory study. Surface Science 2003, 544 (2), 295-308.
    15. Lee, C. H.; Bonevich, J. E.; Davies, J. E.; Moffat, T. P., Magnetic Materials for Three-Dimensional Damascene Metallization: Void-Free Electrodeposition of Ni and Ni70Fe30 Using 2-Mercapto-5-benzimidazolesulfonic Acid. Journal of The Electrochemical Society 2008, 155 (7), D499.
    16. Fang, Y.; Ding, S.-Y.; Zhang, M.; Steinmann, S. N.; Hu, R.; Mao, B.-W.; Feliu, J. M.; Tian, Z.-Q., Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution. Journal of the American Chemical Society 2020, 142 (20), 9439-9446.
    17. Maksymovych, P.; Yates, J. T., Jr., Au Adatoms in Self-Assembly of Benzenethiol on the Au(111) Surface. Journal of the American Chemical Society 2008, 130 (24), 7518-7519.
    18. Zhang, J.; Welinder, A. C.; Chi, Q.; Ulstrup, J., Electrochemically controlled self-assembled monolayers characterized with molecular and sub-molecular resolution. Physical Chemistry Chemical Physics 2011, 13 (13), 5526-5545.
    19. Seo, K.; Borguet, E., Potential-Induced Structural Change in a Self-Assembled Monolayer of 4-Methylbenzenethiol on Au(111). The Journal of Physical Chemistry C 2007, 111 (17), 6335-6342.
    20. Lu, H.-L.; Lin, D.-Q.; Gao, D.; Yao, S.-J., Evaluation of immunoglobulin adsorption on the hydrophobic charge-induction resins with different ligand densities and pore sizes. Journal of Chromatography A 2013, 1278, 61-68.
    21. Carro, P.; Andreasen, G.; Vericat, C.; Vela, M. E.; Salvarezza, R. C., New aspects of the surface chemistry of sulfur on Au(111): Surface structures formed by gold-sulfur complexes. Applied Surface Science 2019, 487, 848-856.
    22. March, J., Advanced Organic Chemistry 1985, 3rd Ed.
    23. Zhumaev, U. E.; Lai, A. S.; Pobelov, I. V.; Kuzume, A.; Rudnev, A. V.; Wandlowski, T., Quantifying perchlorate adsorption on Au(111) electrodes. Electrochimica Acta 2014, 146, 112-118.
    24. Cuesta, A.; Kleinert, M.; Kolb, D. M., The adsorption of sulfate and phosphate on Au(111) and Au(100) electrodes: an in situ STM study. Physical Chemistry Chemical Physics 2000, 2 (24), 5684-5690.
    25. Möller, F. A.; Magnussen, O. M.; Behm, R. J., Overpotential-Controlled Nucleation of Ni Island Arrays on Reconstructed Au(111) Electrode Surfaces. Phys Rev Lett 1996, 77 (26), 5249-5252.
    26. Pleth Nielsen, L.; Besenbacher, F.; Stensgaard, I.; Laegsgaard, E.; Engdahl, C.; Stoltze, P.; Jacobsen, K. W.; Nørskov, J. K., Initial growth of Au on Ni(110): Surface alloying of immiscible metals. Physical Review Letters 1993, 71 (5), 754-757.
    27. Proud, W. G.; Gomez, E.; Sarret, E.; Valles, E.; Müller, C., Influence of pH on nickel electrodeposition at low nickel(II) concentrations. Journal of Applied Electrochemistry 1995, 25 (8), 770-775.
    28. Santana, A. I. C.; Díaz, S. L.; Barcia, O. E.; Mattos, O. R., A Kinetic Study on Nickel Electrodeposition from Sulfate Acid Solutions: I. Experimental Results and Reaction Path. Journal of The Electrochemical Society 2009, 156 (8), D326.
    29. Chiu, Y.-D.; Dow, W.-P., Accelerator Screening by Cyclic Voltammetry for Microvia Filling by Copper Electroplating. Journal of The Electrochemical Society 2013, 160 (12), D3021.
    30. Blobner, F.; Abufager, P. N.; Han, R.; Bauer, J.; Duncan, D. A.; Maurer, R. J.; Reuter, K.; Feulner, P.; Allegretti, F., Thiolate-Bonded Self-Assembled Monolayers on Ni(111): Bonding Strength, Structure, and Stability. The Journal of Physical Chemistry C 2015, 119 (27), 15455-15468.
    31. Rufael, T.; Huntley, D.; Mullins, D.; Gland, J., Adsorption and reactions of benzenethiol on the Ni (111) surface. The Journal of Physical Chemistry 1994, 98 (49), 13022-13027.
    32. Dietterle, M.; Will, T.; Kolb, D. M., The initial stages of copper deposition on Ag(111): an STM study. Surface Science 1995, 342 (1), 29-37.
    33. Fontanesi, C.; Tassinari, F.; Parenti, F.; Cohen, H.; Mondal, P. C.; Kiran, V.; Giglia, A.; Pasquali, L.; Naaman, R., New one-step thiol functionalization procedure for Ni by self-assembled monolayers. Langmuir 2015, 31 (11), 3546-52.
    34. Guo, L.; Searson, P. C., On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochimica Acta 2010, 55 (13), 4086-4091.
    35. Abd El Rehim, S. S.; Abd El Wahaab, S. M.; Ibrahim, M. A. M.; Dankeria, M. M., Electroplating of cobalt from aqueous citrate baths. Journal of Chemical Technology & Biotechnology 1998, 73 (4), 369-376.

    QR CODE
    :::