| 研究生: |
吳培任 Pei Jen Wu |
|---|---|
| 論文名稱: |
應用相關均衡賽局與時空網路於行人模擬之研究 |
| 指導教授: | 朱致遠 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 行人模擬 、相關均衡 、賽局理論 、時空網路 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
賽局理論應用在研究行人間的移動行為衝突已經是個不可缺少的方法,本研究之目的在探討行人在空間中的個體行為與群體的互動行為(如:等待、迴避等),利用賽局理論中行人理性選擇策略的概念以了解行人在狹小的空間中發生衝突所採取的最佳移動方式及效益。本研究採用時空網路建構行人在空間與時間中的移動模型,利用網路流量觀念描述行人的移動過程,使用數學規劃限制行人的合理移動行為及障礙物設定,並依照賽局理論將行人在模擬中發生衝突所採取的移動方式轉化為各種策略取得行人在不同策略組合中效益值,接著在使用相關均衡的方式求取完全訊息靜態賽局之均衡解。在本研究最後假設多個案例來評估此流量模型中的模擬結果是否能表達出行人互動的行為及在相關均衡求解下的結果對於每位行人都是最適當的選擇,且在賽局模擬中的行人之行為是可提升真實性。
Game Theory is an indispensable method to research the conflicts between human behavior. This study aims to investigate the pedestrian in the space of individual behavior and group interaction. For instance: wait and avoidance. And we use the concept of flow network to describe the process of moving pedestrian and rational choice strategy in Game Theory to learn the conflict of pedestrians in a small space have taken the best moves and effectiveness.
In this study, we use time network to construct the flow model of pedestrian in the space and time. And we also use mathematical programming tools to limit the reasonable move of pedestrians reasonable move and to set obstacles. According to game theory, pedestrian conflicts in the simulation moves taken into pedestrians in a variety of strategies to obtain the combination of different strategies payoffs. Hence, we use correlated equilibrium to obtain a game of complete information static equilibrium.
Finally, the study assumes a number of cases to evaluate this flow model simulation results whether express behavior and human interaction in the results correlated equilibrium solution is the most appropriate choice. And the simulation game can enhance the authenticity of the act.
1.Aumann, R. J. (1987). “Correlated Equilibrium as an Expression of Bayesian Rationality,” The Econometric SocietyStable, Vol. 55, No. 1, pp. 1-18
2.Aumann, R. J. (1974). “Subjectivity and correlation in randomized strategies,” Journal of Mathematical Economics, Vol. 1,No. 1, pp. 67-96
3.Conitzer, V. and Korzhyk, D. (2011). “Commitment to Correlated Strategies,” Proceedings of the 25th National Conference on Artificial Intelligence (AAAI- 11). pp. 632-637, San Francisco, CA, USA
4.Daskalaskis C. and Papadimitriou C. H. (2005). “The complexity of games on highly regular graphs,” Proceedings of the 13th Annual European Symposium on Algorithms(ESA), pp. 71-82
5.Hart, S. and Mas-Colell, A. (2000). “A simple adaptive procedure leading to correlated equilibrium,” Econometrica, Vol. 68, No. 5, pp. 1127-1150
6.Nash, J. F. (1950). “The Bargaining Problem," Econometrica, Vol. 18, No. 2, pp. 155-162
7.Neumann, V. and Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton University Press
8.Yan, S. Y. and Lin, C. G. (1997). “Airline Scheduling for the Temporary Closure of Airports,” Transportation Science, Vol. 31, No. 1, pp. 77-82
9.陳惠國(2010),「研究方法─理論與實務」,滄海書局
10.陳展維,「合作與競爭賽局策略下之行人模擬」,國立中央大學,碩士論文,2012