跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃柏崴
Po-Wei Huang
論文名稱: 不同滑移速度下高嶺土摩擦係數-剪位移曲線探討:從鐵氟龍汙染與微觀構造切入
指導教授: 董家鈞
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 123
中文關鍵詞: 摩擦係數-剪位移曲線型態旋剪試驗氣乾高嶺土鐵氟龍汙染微觀構造
外文關鍵詞: Friction coefficient-shear displacement curves, Rotary shear test, Air-dried kaolinite, Teflon contamination, Microstructure
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 山崩滑動面的摩擦特性與滑移速度及滑移距離息息相關,過去已有許多學者利用低速至高速旋剪儀來探討及模擬長位移山崩的摩擦行為。前人以氣乾高嶺土為材料於不同滑移速度下進行旋剪試驗,發現在不同滑移速度區間下具有不同的摩擦係數-剪位移曲線型態,然而前人研究較著重在摩擦律的建立,對不同摩擦係數-剪位移曲線的產生及演變並無進行更深入的研究,因此本研究嘗試針對高嶺土於不同滑移速度下的摩擦係數-剪位移曲線型態的發生進行探討。本研究所使用的實驗儀器旋剪儀相較於傳統土壤剪力試驗(直剪、三軸試驗),具有能夠達到長位移剪切的優勢,當試體為粉末時,會以低摩擦特性的鐵氟龍環包覆試體,然而在高速旋剪試驗,鐵氟龍環可能因為高溫變質或受剪磨損,進而汙染試體,會有影響實驗結果的疑慮,故本研究會考慮鐵氟龍汙染對摩擦曲線型態的影響,對受剪高嶺土進行鐵氟龍汙染的含量量化。另外,由於微觀構造一定程度上反映實驗材料之力學特性,因此本研究同時也利用不同剪位移下的微觀構造的觀察,試圖討論微觀構造與摩擦係數-剪位移曲線演變間的關係。結果表明,在滑移速度1m/s下,受剪後試體具有29.9%的汙染,但其汙染含量對於1m/s滑移速度條件下的尖峰摩擦係數與穩態摩擦係數的影響不顯著。另外,根據本研究結果,也認為前人研究中小於0.7m/s滑移速度條件之受剪高嶺土並無污染含量,就算存在汙染含量,其汙染對實驗結果的影響也不明顯。另一方面,微觀構造結果顯示,在低滑移速度10^-6 m/s下,並無明顯剪切構造產生,其變形是均勻的(Uniform);而在滑移速度10^-5-10^-3 m/s,摩擦曲線呈現兩個峰值,本研究認為第二峰值才是對應前人研究微觀構造結果中剪切構造開始出現的剪位移階段。


    The friction characteristics of landslide sliding surfaces are closely related to the slip velocity and the displacement. In the past, many scientists have used low to high velocity rotary shear apparatus to discuss and simulate the friction behavior of long-displacement landslides. The predecessors used air-dried kaolinite as the material to conduct rotary shear experiments at different slip velocity, and found that there are different friction coefficient-shear displacement curves in different slip velocity ranges. However, the previous studies focused on the establishment of friction laws, the generation and evolution of different friction coefficient-shear displacement curves have not been further studied. Therefore, this study attempted to conduct a more in-depth discussion on the friction coefficient-shear displacement curves of kaolinite at different slip velocity. Compared with the traditional soil shear test (direct shear test and triaxial shear test), the rotary shear apparatus has the advantage of being able to achieve long-displacement shearing. The Teflon ring which has the low friction characteristic is used to cover the test body. However, in the high velocity rotary shear test, the Teflon ring may contaminate the test body due to decomposition or shear wear, which may affect the experimental results. Therefore, this study will consider the effect of Teflon contamination on friction curve patterns, and the content of Teflon contamination in sheared kaolinite will be quantified. In addition, Since the microstructure reflects the mechanical properties of the experimental materials, this study also attempted to observe the microstructure at different shear displacements. The results show that the sheared kaolinite has 29.9% contamination at a slip velocity of 1 m/s, but the contamination content has no significant effect on the peak friction coefficient and the steady-state friction coefficient. It is also believed that the sheared kaolinite in other slip velocity conditions in previous studies has no pollution content according to the results, and even if it exists, the pollution has no significant effect on the experimental results. On the other hand, there is no obvious Riedel shear under the low slip velocity of 10^-6 m/s, and the deformation is uniform. At the slip velocity of 10^-5-10^-3 m/s, the friction curves present two peaks, and it is believed that the second peak is the shear displacement stage corresponding to the appearance of Riedel shear in the microstructural results of the previous study.

    摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 ix 表目錄 xvi 符號表 xvii 一、緒論 1 1.1 研究動機與目的 1 1.2 研究流程 3 二、文獻回顧 5 2.1 摩擦係數-剪位移曲線型態 5 2.1.1 滑移強化與滑移弱化曲線 5 2.1.2 氣乾高嶺土於不同滑移速度下之摩擦係數-剪位移曲線型態 7 2.2 鐵氟龍汙染對摩擦係數-剪位移曲線的影響 10 2.3 微觀剪切構造 14 三、研究方法 26 3.1 低速至高速旋剪試驗 26 3.2 試驗流程 29 3.2.1 試體製備 29 3.2.2 試驗操作流程 29 3.2.3 試驗條件規劃 31 3.2.4鐵氟龍環摩擦力校正 33 3.3 鐵氟龍含量量化分析 33 3.3.1 X光繞射分析儀(XRD) 33 3.3.2 熱微差掃描分析儀(DSC) 34 3.3.3 受剪試體的外圍取樣 35 3.4 試體之微觀構造觀察 36 四、結果與討論 37 4.1 鐵氟龍環摩擦力校正 37 4.2 高嶺土之阿太堡限度試驗 41 4.3 旋剪試驗之預壓密結果 43 4.4 受剪高嶺土鐵氟龍含量量化結果與影響 44 4.4.1 滑移速度1 m/s下受剪高嶺土以XRD分析進行量化 44 4.4.2 滑移速度1 m/s下受剪高嶺土以DSC分析進行量化 46 4.4.3 鐵氟龍汙染對1m/s滑移速度下摩擦係數-剪位移曲線的影響 48 4.4.4 滑移速度0.7 m/s下受剪高嶺土以DSC分析進行量化 51 4.5 不同滑移速度、不同剪位移之微觀構造觀察與摩擦係數-剪位移曲線的關係 53 五、結論與建議 68 參考文獻 70 附錄一 76 附錄二 87 附錄三 91 附錄四 92 附錄五 94

    [1]余威論,2009,「速度-位移相關摩擦係數與巨型山崩運動特性」,國立中央大學應用地質所,碩士論文。
    [2]李羿葦,2017,「不同排水速度/滑移速度條件下高嶺土之摩擦特性探討」, 國立中央大學應用地質所,碩士論文。
    [3]江宜佳,2020,「氣乾高嶺土之速度-位移相依摩擦律」,國立中央大學應用地質所,碩士論文。
    [4]劉學樺,2013,「由斷層泥旋剪試驗推估基底滑脫面於不同深度與滑移速度條件下之摩擦特性」,國立中央大學應用地質所,碩士論文。
    [5]賴俊融,2015,「單速與不同頻率變速旋剪試驗條件下高嶺土之速度與位移相依摩擦律」,國立中央大學應用地質所,碩士論文。
    [6]Kaneki, S., Oohashi, K., Hirono, T., Noda, H., 2020. Mechanical amorphization of synthetic fault gouges during rotary-shear friction experiments at subseismic to seismic slip velocities. Journal of Geophysical Research: Solid Earth, 125, e2020JB019956.
    [7]Honda, G., Hirono, T., Hirai, N., Tanikawa, W., 2013. Quantitative evaluation of polytetrafluoroethylene contamination on rock powder specimens during high-velocity rotary-shear experiments. JAMSTEC Report of Research and Development, 16, 23-29.
    [8]Boulton, C., Yao, L., Faulkner, D.R., Townend, J., Toy, V.G., Sutherland, R., Ma, S., Shimamoto, T., 2017. High-velocity frictional properties of Alpine fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation. Journal of Structural Geology, 97, 71-92.
    [9]Kuo, C.Y., Tai, Y.C., Chen, C.C., Chang, K.J., Siau, A.Y., Dong, J.J., Han, R., Shimamoto, T., Lee, C.T., 2011. The landslide stage of the Hsiaolin catastrophe: Simulation and validation. Journal of Geophysical Research, 116, F04007.
    [10]Yao, L., Shimamoto, T., Ma, S., Han, R., Mizoguchi, K., 2013. Rapid postseismic strength recovery of Pingxi fault gouge from the Longmenshan fault system: Experiments and implications for the mechanisms of high-velocity weakening of faults. Journal of Geophysical Research: Solid Earth, 118, 4547-4563.
    [11]Yang, C.M., Yu, W.L., Dong, J.J., Kuo, C.Y., Shimamoto, T., Lee, C.T., Togo, T., Miyamoto, Y., 2014. Initiation, movement, and run-out of the giant Tsaoling landslide-What can we learn from a simple rigid block model and a velocity-displacement dependent friction law? Engineering Geology, 182, 158-181.
    [12]Sawai, M., Shimamoto, T., Togo, T., 2012. Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes. Journal of Structural Geology, 38, 117-138.
    [13]Kitajima, H., Chester, J.S., Chester, F.M., Shimamoto, T., 2010. High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution. Journal of Geophysical Research, 115, B08408.
    [14]Hu, T. Y., 1982. Characterization of the crystallinity of polytetrafluoroethylene by X‐ray and IR spectroscopy, differential scanning calorimetry, viscoelastic spectroscopy and the use of a density gradient tube. Wear, 82, 369-376.
    [15]Tsutsumi, A., Shimamoto, T., 1996. Frictional properties of monzodiorite and gabbro during seismogenic fault motion. Journal Geological Society of Japan, 102(3), 204-248.
    [16]Shimamoto, T., Tsutsumi, A., 1994. A new rotary-shear high-speed frictional testing machine: Its basic design and scope of research. Journal of Tectonic Research. Group of Japan, 39, 65-78.
    [17]Ikari, M.J., Saffer, D., Marone, C., 2009. Frictional and hydrologic properties of clay-rich fault gouge. Journal of Geophysical Research, 114, B05409.
    [18]Togo, T., Shimamoto, T., Ma, S., Hirose, T., 2011. High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake. Earthquake Science, 24(3), 267-281.
    [19]Starkweather, H.W., Zoller, P., Jones, G.A., Vega, A.J., 1982. The heat of fusion of polytetrafluoroethylene. Journal of Polymer Science: Polymer Physics Edition, 20, 751-761.
    [20]Haines, S.H., Kaproth, B., Marone, C., Saffer, D., van der Pluijm, B., 2013. Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution. Journal of Structural Geology, 51, 206-225.
    [21]Logan, J.M., Freidman, M., Higgs, N., Dengo, C., Shimamoto, T., 1979. Experimental studies of simulated fault gouge and their application to studies of natural fault zones. Proceedings of Conference VIII: Analysis of actual fault zones in bedrock. Open-File Report-U.S. Geological Survey, 305-343.
    [22]Logan, J.M., Dengo, C., Higgs, N., Wang, Z.Z., 1992. Fabrics of experimental fault zones: Their development and relationship to mechanical behavior. In: Evans, B., Wong, T.-F. (Eds.), Fault Mechanics and Transport Properties of Rocks. Academic Press, New York, 33-69.
    [23]Kuo, L.W., Hung, C.C., Li, H., Aretusini, S., Chen, J., Di Toro, G., Spagnuolo, E., Felice, F.D., Wang, H., Si, J., Sheu, H.S., 2022. Frictional properties of the Longmenshan fault belt gouges from WFSD-3 and implications for earthquake rupture propagation. Journal of Geophysical Research: Solid Earth, 127, e2022JB024081.
    [24]Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2007. Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, L01308.
    [25]Rao, S.M., Sridharan, A., 1985. Mechanism controlling the volume change behaviour of kaolinite. Clays and Clay Mineral, 33(4), 323-328.
    [26]Spagnoli, G., Stanjek, H., Sridharan, A., 2012. Influence of ethanol/water mixture on the undrained shear strength of pure clays. Bulletin of Engineering Geology and the Environment, 71(2), 389-398.
    [27]Horpibulsuk, S., Yangsukkaseam, N., Chinkulkijniwat, A., Du, Y.J., 2011. Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Applied Clay Science, 52, 150-159.
    [28]Khosravi, E., Ghasemzadeh, H., Sabour, M.R., Yazdani, H., 2013. Geotechnical properties of gas oil-contaminated kaolinite. Engineering Geology, 166, 11-16.
    [29]White, W.A., 1949. Atterberg limits of clay minerals. American Mineralogist, 34, 508-512.
    [30]Mitchell, J.K., Soga, K., 2005. Fundamentals of soil behavior. 3rd ed. John Wiley & Sons, Inc., Hoboken, N.J.
    [31]Pham, Q.V., 2019. Velocity-dependent frictional properties of kaolinite clay under different drainage conditions with temperature measurement. National Central University, Master Thesis.
    [32]Tran, N.T., 2021. The relationship of kaolinite friction characteristics and temperature changing in submerged conditions. National Central University, Master Thesis.
    [33]Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M., de Rossi, N., 2011. Low-to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 116, B09208.
    [34]Yao, L., Ma, S., Shimamoto, T., Togo, T., 2013. Structures and high-velocity frictional properties of the Pingxi fault zone in the Longmenshan fault system, Sichuan, China, activated during the 2008 Wenchuan earthquake. Tectonophysics, 599, 135-156.
    [35]Ujiie, K., Tsutsumi, A., 2010. High-velocity frictional properties of clay-rich fault gouge in a megasplay fault zone, Nankai subduction zone. Geophysical Research Letters, 37, L24310.
    [36]Trivedi, M.K., Sethi, K.K., Panda, P., Jana, S., 2017. Physicochemical, thermal and spectroscopic characterization of sodium selenate using XRD, PSD, DSC, TGA/DTG, UV-vis, and FT-IR. Marmara Pharmaceutical Journal, 21, 311-318.
    [37]Hubbard, C.R., Smith, D.K., 1977. Experimental and calculated standards for quantitative analysis by powder diffraction. Advances in X-Ray Analyses, 20, 27-29.
    [38]Ong, J.L., Farley, D.W., Norling, B.K., 2000. Quantification of leucite concentration using X-ray diffraction. Dental Materials, 16, 20-25.

    QR CODE
    :::