| 研究生: |
陳彥凱 Yan-kai Chen |
|---|---|
| 論文名稱: |
探討共培養對Chlorella sp.的生長與生產活性多醣的影響 Study on the effect of co-culture to the growth of Chlorella sp. and produce activity polysaccharide. |
| 指導教授: |
徐敬衡
Chin-Hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 酵母菌 、小球藻 、共培養 、多醣 、刺激免疫 |
| 外文關鍵詞: | Chlorella sp., Saccharomyces cerevisiae, co-culture, polysaccharide, immunostimulation |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小球藻Chlorella sp.是一富含營養價值的微藻,已被大量商業化生產,如何增加生物量(biomass)以及其產物的營養價值,是近年來不斷被研究與改進的目標。
本論文將以小球藻與釀酒酵母(Saccharomyces cerevisiae)共培養(co-culture),探討因兩物種交互作用而改變的環境因子,包括二氧化碳、葡萄糖濃度、pH值以及崩解酵母細胞充當氮源對小球藻造成的影響。
實驗結果發現,小球藻Chlorella sp.在0.03%~5%二氧化碳濃度下,小球藻生長以及多醣產量隨濃度提高而上升;在弱鹼pH7.4~pH8.4範圍左右較適合Chlorella sp.生長,pH9.0則略微降低生長,pH6.5則有明顯抑制現象;0.125 g/L崩解酵母細胞有助於Chlorella sp.生長並提高多醣產量,另外也找出小球藻-酵母菌共培養系統的最佳葡萄糖濃度為0.5 g/L以及1 g/L,其中又以1 g/L可得最高的多醣產量,在此條件下共培養與兩物種分開培養相比可提升23% 總細胞濃度,胞內多醣產量1.5倍以及提高胞內多醣平均分子量以及提高胞內多醣活性30%。
Chlorella sp. is a kind of microalgae with many nutrition. It has been produce in commercialize. In recent years, to enhance the biomass and the value of production is important objects.
This thesis had studied in the interaction between Chlorella sp. and Saccharomyces cerevisiae, and the environment factor include carbon dioxide, glucose concentration, pH, and yeast spend cells.
It was found that Chlorella sp. growth and production of polysaccharide were directly proportional to CO2 concentration; In the range of about weak base pH7.4 ~ pH8.4 more suitable for Chlorella sp. growth pH9.0 was slightly lower growth, and pH 6.5 were supressd; 0.125 g/L spent yeast cell promoted Chlorella sp. growth and increase polysaccharide production; the best concentration of glucose that improve Chlorella sp. growth were 1 g/L and 0.5 g/L, among which 1 g/L system were produce the most polysaccharide. By co-culture, we can get more 23% cells, and 1.5 times intracellular polysaccharide and its molecular weight, also we can promoted the activity of IPS 30% than monoculture.
陳裕星,洪梅珠,林秀儒,”釀酒用酵母菌的篩選與鑑定” ,農政與農情,151期 (2005)。
謝誌鴻,吳文騰,”微藻-綠色生質能源”,科學發展,433期(2009)
劉仲康, “神奇的酵母菌” , 科學月刊, 1997。
李佳娥, “小球藻多醣體的萃取與功能評估探討”,嘉南藥理科技大學化妝品科技研究所碩士論文,2007。
江善宗、殷儷容,“纖維素水解酵素於綠藻工業之應用研究” 農業
生技產業季刊,第七期(2006)。
黃悌儀, “綠藻對大白鼠對體內脂質代謝的影響”,台北醫學院保
健營養學研究所碩士論文,2000。
張上鎮、王升陽、葉汀峰、吳季玲, “超音波法快速萃取及定量葉綠
素”,台灣林業科學 12(3):329-334
中華民國行政院環境保護署環境檢驗所, “水中葉綠素 a檢測方法-
丙酮萃取法/分光光度計分析法” ,NIEA E507.02B, 中華
民國95年9月6日公告。
張展、劉建國, “微藻高密度培養中的生長指標和適應機制”, 海洋
水產研究 Vol. 24, No.4 (2003)。
Arinaga S., Karimine N. Takamuku K., Nanbara S., Nagamatsu M., Ueo H. and Akiyoshi T. Enhanced production of interleukin 1 and tumor necrosis factor by peripherai monocytes after lentinan administration in patients with gastric carcinoma. Int. J Immunopharmac., 14, 43-47 (1992).
Becler E. W. Microalgae: biotechnology and microbiology. Cambridge University Press. UK. P.1. 1994.
Beer L. L., Boyd E. S., Peters J. W. and Posewitz M. C. Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20, 264–271 (2009).
Bohn, J. A. and BeMiller, J.N., (1?3)-β-D-Glucans as biological response modifiers: a review of structure-functional aztivity relationships. Carbohydrate Polymers, 28(1), 3-14 (1995).
Cai S. Q., Hu C. Q., and Du S. B. Comparisons of Growth and Biochemical Composition between Mixed Culture of Alga and Yeast and Monoculture. JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 104,5, 391–397 (2007).
Cardozo K. H. M., Guaratini T., Barros M. P., Falcao V. R., Tonon A. P., Lopes N. P., Campos S., Torres M. A., Souza A. O., Colepicolo P. and Pinto E. Metabolites from algae with economical impact. Comparative Biochemistry and Physiology. 146, 60-78 (2007).
Chiu S.Y., Kao C. Y., Chen C. H., Kuan T. C., Ong S. C. and Lin C. S. Reduction of CO2 by a high-density culture of Chlorella sp.in a semicontinuous photobioreactor, Bioresource technology, 99 3389–3396 (2008).
Converti A., Casazza A. A., Ortiz E. Y., Perego P.and Borghi M. D., Effect temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chemical Engineering and Processing: Process Intensifiction, 48, 1146–1151 (2009).
Dere S., Gunes T. and Sivaci R. Spectrophotometric determination of chlorophyll – A, B and total carotenoid contents of some algae species using different solvents. Tr. J. of Botany 22,13-17 (1998).
Dong Q. L. and Zhao X. M. In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catalysis Today 98,537-544 (2004).
Duffus, J. H., Levi, C., and Manners, D J. Yeast cell-wall glucans. Advances in Microbial Physiology. 23, 151-181 (1982).
Eullaffroy P. and Vernet Guy, The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phtotoxicity. Water Research 37,1983-1990 (2003).
Freimund S., Sauter M., Kappeli O and Dutler H. A new non-degrading isolation process for 1,3-β-D-glucan of high purity from backer’s yeast Saccharomyces cerevisiae. Carbohydrate Polymers. 54,159-171 (2003).
Furehauf J. P., Bonnard G. D. and Herberman R. B. The effect of lentinan on production of interleukin-1 by human monocytes. Immonpharmacology, 5, 65-74 (1982).
Gao M. T., Hirata M., Toorisaka E. and Hano T. Study on acid-hydrolysis of spent cells for lactic acid fermentation. Biochemical Engineering Journal 28,87-91 (2006)
Haass D, Tanner W, Regulation of hexose transport in Chlorella vulgaris, Plant physiology, 53, 14-20 (1974).
Izumo A., Fujiwara S., Oyama Y., Satoh A., Fujita N., Nakamura N.and Tsuzuki M., Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: Comparison of structure and properties of pyrenoid and stroma starch. Plant Science, 172, 1138–1147 (2007).
Bohn J. A., BeMiller J.N., (1-3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships, Carbohydrate Polymers, 28,3-14 (1995).
Kamiya A, Kowallik W, Photoinhibition of glucose uptake in Chlorella, Plant Cell physiology, 28(4), 611-619 (1987).
Liang Y., Sarkany N. and Cui Y. Biomass and lipid productivies of Chlorella vulgaris under autotrophic, heterotrophic and mixtrophic growth conditions, Biotechnol Lett, 31, 1043–1049 (2009)
Manners D. J., Masson A. J. and Patterson, J. C., Structure of a
β-(1?3)-D-glucan from yeast cell walls. Biochemical Journal,135(1), 19-30 (1973).
Campbell N. A., Reece J. B., 總審校:鐘楊聰,編譯:鐘楊聰、張立雪、
徐歷鵬、黃碧祈, 生物學,第六版,偉明圖書有限公司 (2005)
Ogbonna J. C. and Tanaka H. Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors. Journal of Applied phycology 12, 207-218 (2000).
O’Reilly A.M., Scott J.A., Enzyme Microb. Technol. 17, 636-646 (1995).
Pisman T. I. and Somova L. A. Interaction of a mixed yeast culture in an “autotroph-hetrotroph” system with a closed atmosphere cycle and spatially separated components. Advance in space Research. 31, 7, 1751-1756 (2003).
Randolph K., Wilson J., Tedesco L., Li L., Pascual L. and Soyeux E. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote sensing of environment 112 4009-4019 (2008).
Sato N., Tsuzuki M. and Kawaguchi A. Glycerolipid synthesis in Chlorella kessleri 11h II. Effect of the CO2 concentration during growth, BIOCHIMICA ET BIOPHYSICA ACTA. 1633, 35– 42 (2003).
Sheng J. , Yu F., Xin Z., Zhao L., Zhu X. and Hu Q. Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa, Food Chemistry 105, 533-539 (2007).
Shi X. M., Zhang X.U. and Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources, ENZYME and MICROBIAL TECHNOLOGY, 27, 312–318 (2000).
Shi Y., Sheng J., Yang F. and Hu Q. Purification and identification of polysaccharide derived from Chlorella pyrenoidosa, Food Chemistry 103, 101-105 (2007).
Sobczuk T. M., Camacho F. G., Rubio F. C., Fernandez F. G. A. and Grima E. M. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering 67, 465–475 (2000).
Spolaore P., Cassan C. J., Duran E. and Isambert A. Commerical Applications of Microalgae. Journal of bioscience and bioengineering, 101, 2, 87-96. (2006).
Stewart A. C. The chlorophyll-protein complexes of a thermophilic blue-green alga. FEBS LETTERS. 114, 1 (1980).
Sung K. D., Lee J. S., Shin C. S. and Park S. C. Isolation of a new highly CO2 tolerant fresh water microalga Chlorella sp. KR-1. Renewable Energy 16, 1019-1022 (1999).
Tam N. F. Y. and Wong Y.S. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media, Bioresource Technology, 57, 45-50 (1996).
Ugwu C.U., Aoyagi H.and Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresurce technology, 99, 4021–4028 (2007).
Wang H. X., Ng T. B., Liu W. K., Ooi V. E. and Chang S. T. Polysaccharide-peptide complexes from the culture mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages, Int. J. Biochem. Cell Biol., 28, 601-607 (2007).
Wang Y. and Peng J. Growth-associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chloroophyta), World J Microbiol Biotechnol, 24, 1915-1922 (2008).
Young S. H. and Jacobs R. R. Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue. Carbohydr Res. 310, 91-99.1998.
Zigmantas D., Hiller R. G., Sundstrom V. and Polıvka T. Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. PNAS. 99, 26 16760-16765, (2002).