| 研究生: |
呂俊葦 Jiun-Wei Lu |
|---|---|
| 論文名稱: |
應用於視覺輔具的電刺激器與阻抗量測電路之分析與設計 Analysis and Design of Electrical Stimulator and Impedance Measurement Circuitry for Visual Prostheses |
| 指導教授: |
薛木添
Muh-Tian Shiue |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 阻抗量測 、電刺激器 、電位轉移器 、視覺輔具 |
| 外文關鍵詞: | impedance measurement, electrical stimulator, level shifter, visual prothesis |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
世界上有百萬以上的人,因為色素性視網膜炎以及老年性黃斑部退化疾病而導致失明。這兩種疾病導致感光細胞發生不可逆的退化,使得視覺傳輸路徑的第一站無法正常地連結。根據研究發現,患者可以藉由視網膜或視覺皮質區上的電刺激,成功地形成視覺感知。這種產生電刺激的人工裝置稱作視覺輔具,通常是長期的植入在眼睛或是大腦上,取代受損的組織,提供患者日常生活需要的視覺功能。目前使用視覺輔具來重建盲人的視覺,對於神經復健工程是相當重要的研究。
本論文的研究,著重於植入式刺激器以及量測系統的考量與設計。為了刺激盲人剩餘的神經細胞,設計六位元的類比數位轉換器,以調整輸出電流的波形,使得患者可以得到基本的景像辨別能力。此外,文中提出新型的量測電路,觀察植入之後電極組織介面的狀況,這將有利於評估刺激成效以及刺激參數的調整。
More than millions of people worldwide are suffering from blindness as a result of retinitis pigmentosa (RP) and age-related macular degradation (AMD). Both of them result in irreversible photoreceptor degeneration, disconnecting the first station of vision from normal pathway. So far, it has been demonstrated that applying electrical stimulation pulse to diseased retina (or directly stimulating the primary visual cortex) can lead to a successful elicitation in visual perception. Such a stimulation pulse can be generated by a man-made device called visual prosthesis. In general, the device is chronically implanted inside the eye or brain to serve as a substitute for the impaired tissue, such that the sufferer can perform several visual tasks in daily life. Restoring sight of vision for blind with visual prosthesis has been of considerable importance in today’s neural rehabilitation engineering.
Motivated by this, we present in this thesis the considerations and design of implantable stimulator and impedance measurement system. In order to activate the targeted residual neural cells of the blind, a 6-bit digital-to-analog converter (DAC) has been designed. It can be in charge of outputting a stimulus waveform, thereby providing the patient basic discrimination regarding the scene. In addition, a new architecture of impedance measurement system is proposed to diagnosis the status of electrode-tissue interface after implantation. It is also useful for evaluating the effect on stimulation and adjustment of stimulus parameters.
[1] http://www.blindness.org
[2] http://webvision.med.utah.edu
[3] H. Kolb, “How the retina works,” American Scientist, vol. 91, pp. 28-35, Jan.-Feb. 2003.
[4] E. Zrenner, “Will retinal implants restore vision?,” Science, vol. 295, no. 5557, pp. 1022-1025, Feb. 2002.
[5] J. D. Weiland and M. S. Humayun, “Intraocular retinal prosthesis,” IEEE Engineering in Medicine and Biology Magazine, vol. 25, pp. 60-66, Sep.-Oct. 2006.
[6] M. S. Humayun, E. de Juan Jr., G. Dagnelie, R. J. Greenberg, R. H. Propst, and H. Phillips, “Visual perception elicited by electrical stimulation of the retina in blind humans,” Archives Ophthalmology, vol. 114, no. 1, pp. 40-46, Jan. 1996.
[7] M. S. Humayun, E. de Juan Jr., J. D. Weiland, G. Dagnelie, S. Katona, R. Greenberg, and S. Suzuki, “Pattern electrical stimulation of the human retina,” Vision Research, vol. 39, pp. 2569-2576, 1999.
[8] J. D. Weiland, D. Yanai, M. Mahadevappa, R. Williamson, B. V. Mech, G. Y. Fujii, J. Little, R. J. Greenberg, E. de Juan Jr., and M. S. Humayun, “Electrical stimulation of retina in blind humans,” IEEE Engineering in Medicine and Biology Society Conference, vol. 3, pp. 2021-2022, Sep. 2003.
[9] K. Cha, K. W. Horch, R. A. Normann, and D. K. Boman, “Reading speed with a pixelized vision system,” Journal of the Optical Society of America A, vol.5 , no. 5, pp. 673-677, May 1992.
[10] R. W. Thompson, G. D. Barnett, M. S. Humayun, and G. Dagnelie, “Facial recognition using simulated prosthetic pixelized vision,” Investigative Ophthalmology and Visual Science, vol. 44, no. 11, pp. 5035-5042, Nov. 2003.
[11] K. Cha, K. Horch, and R. A. Normann, “Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system,” Annals of Biomedical Enguneering, vol. 20, no. 4, pp. 439-449, Jul. 1992.
[12] P. Hossain, I. W. Seetho, A. C. Browning, and W. M. Amoaku, “Artificial means for restoring vision,” BMJ, vol. 330, pp. 30-33, Jan. 2005.
[13] M. Sivaprakasam, W. Liu, G. Wang, J. D. Weiland, and M. S. Humayun, “Architecture tradeoffs in high-density microstimulators for retinal prosthesis,” IEEE Transactions on Circuits and Systems, vol. 52, no. 12, pp. 2629-2640, Dec. 2005.
[14] S. K. Kelly and J. Wyatt, “A power-efficient voltage-based neural tissue stimulator with energy recovery,” IEEE Solid-State Circuits Conference, vol. 1, pp. 228-524, Feb. 2004.
[15] J. Simpson and M. Ghovanloo, “An experimental study of voltage, current, and charge controlled stimulation front-end circuitry,” IEEE International Symposium on Circuits and Systems, pp. 325-328, May 2007.
[16] M. S. Humayun , J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little, B. Mech, V. Cimmarusti, G. V. Boemel, G. Dagnelie, and E. de Juan Jr., “Electrical stimulus parameters for visual perception in blind humans with retinal prosthetic implants,” Vision Research, vol. 43, pp. 2573-2581, Feb. 2003.
[17] S. Suzuki, M. S. Humayun, J. D. Weiland, S. J. Chen, E. Margalit1, D. V. Piyathaisere, and E. de Juan Jr., “Comparison of electrical stimulation thresholds in normal and retinal degenerated mouse retina,” Japanese Journal of Ophthalmology, vol. 48, no. 4, pp. 345-349, Feb. 2004.
[18] J. S. Shyu, M. Maia, J. D. Weiland, T. O’Hearn, S. J. Chen, E. Margalit, S. Suzuki, and M.S. Humayun, “Electrical stimulation in isolated rabbit retina,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, pp. 290-298, Sep. 2006.
[19] W. Liu, M. Sivaprakasam, G. Wang, M. Zhou, J. Garnacki, J. Lacoss, and J. Wills, “Implantable biomimetic microelectronic systems design,” IEEE Engineering in Medicine and Biology Magazine, vol. 24, pp. 66-74, Sep.-Oct. 2005.
[20] G. Lesbros and M. Sawan, “Multiparameters monitoring for long term in-vivo characterization of electrode-tissues contacts,” IEEE Electronics, Circuits and Systems Conference, pp. 25-28, Dec. 2006.
[21] http://www.tsmc.com/download/enliterature/html-newsletter/April04/Quality&Reliability/index.html
[22] A. J. Annema , G. J. G. M. Geelen, and P. C. de Jong, “5.5-V I/O in a 2.5-V 0.25-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 528-538, Mar. 2001.
[23] D. Seo, H. Dabag, Y. Guo, M. Mishra, and G. H. McAlister, “High-voltage-tolerant analog circuits design in deep sub-micron CMOS technologies,” IEEE Transactions on Circuits and Systems, vol. 54, pp. 2159-2166, 2007.
[24] S. Rajapandian, K. Shepard, P. Haxucha, and T. Karnik, “High-tension power delivery: Operating 0.18μm CMOS digital logic at 5.4V,” IEEE Solid-State Circuits Conference, vol. 1, pp.298-599, Feb. 2005.
[25] R. J. Baker, CMOS Circuit Design, Layout, and Simulation. Piscataway, NJ : Wiley IEEE Press, 2005.
[26] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[27] M. Sivaprakasam, W. Liu, M.S. Humayun, and J. D. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 763-771, Mar. 2005.
[28] S. C. DeMarco, W. Liu, P. R. Singh, G. Lazzi, M.S. Humayun, and J.D. Weiland, “An arbitrary waveform stimulus circuit for visual prostheses using a low-area multibias DAC,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1679-1690, Oct. 2003.
[29] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[30] A. P. Chu, K. Morris, R. J. Greenberg, and D. M. Zhou, “Stimulus induced pH changes in retinal implant,” IEEE Engineering in Medicine and Biology Society Conference, vol. 2, pp. 4160-4162, Sep. 2004.
[31] A. B. Majji, M. S. Humayun, J. D. Weiland, S. Suzuki, S. A. D’Anna , and E. de Juan Jr., “Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs,” Investigative Ophthalmology and Visual Science, vol. 40, no. 9, pp. 2073-2081, Aug. 1999.
[32] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford University Press, 2002.
[33] M. Burns and G. W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement. New York: Oxford University Press, 2001.
[34] M. Mahadevappa, J. D. Weiland, D. Yanai, I. Fine, R. J. Greenberg, and M. S. Humayun, “Perceptual thresholds and electrode impedance in three retinal prosthesis subjects,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 2, pp. 201- 206, Jun. 2005.
[35] S. Smith, Microelectronic Circuits. USA: Oxford University Press, 1997.
[36] A. Harb, Y. Hu, and M. Sawan, “Low-power CMOS interface for recording and processing very low amplitude signals,” Analog Integrated Circuits and Signal Processing, vol. 39, pp. 39-54, 2004.
[37] C. H. Kuo, S. L. Chen, and S. I. Liu, “Magnetic-field-to-digital converter using PWM and TDC techniques.” IEE Proceedings of Circuits, Devices and Systems, vol. 153, no. 3, pp. 247-252, Jun. 2006.
[38] P. Chen, S. L. Liu, and J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Transactions on Circuits and Systems, vol. 47, no. 9, pp. 954-958, Sep. 2000.
[39] T. A. Demassa and Z. Ciccone, Digital Integrated Circuits. New York: Wiley, 1996.