| 研究生: |
葉庭瑜 Ting-Yu Yeh |
|---|---|
| 論文名稱: |
台灣東北部地區隱沒帶地震單站地動預估式之研究 Single-Station Ground-Motion Prediction Equation for North Eastern Taiwan Subduction Zone Earthquakes |
| 指導教授: |
李錫堤
Chyi-Tyi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 地動預估式 、隱沒帶地震 、單一測站地動預估式 |
| 外文關鍵詞: | Ground-motion prediction equation, Subduction zone earthquake, Single-station Ground-Motion Prediction Equation |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地動值變異性的大小會對地震危害度分析的結果造成明顯影響。因此,如何獲得正確的地動預估式隨機誤差的變異性是目前面臨的重要課題。台灣地震資料相當豐富,是做地震相關研究最適合的地點之一。本研究更新、改進過去國內隱沒帶地震的地動預估式,建立隱沒帶板塊界面型及內部型地震的地動預估式。另外,選擇單站做分析的目的在於避開場址項對非地動隨機誤差的影響,期能有效掌握地動值的隨機變異性。
本研究資料取自氣象局自由場強地動觀測網計畫(TSMIP),從1991到2014年間地震矩規模大於4.0共計14,660筆強震資料。根據地震位置、深度及震源機制的判斷,將台灣東北部隱沒帶的地震分成界面型與內部型兩種,為了區別這兩種類型的地震之地動差異,本研究將這兩種類型的地震分開迴歸,建立各別的地動預估式。衰減模型參考Lin and Lee (2008)的衰減模型,增加規模平方項、連續型的場址參數及震源機制項,利用最大概似度法並搭配混合效應模型進行迴歸分析。
隱沒帶地震的地震波傳播時振幅衰減得慢,可以傳到較遠的距離。本研究分析結果顯示,相同規模、距離的情況下,板塊內部型地震的地動預估式估計之PGA值較板塊界面型地震地動預估式高,而地動預估式之標準差大小分別為0.502及0.567。選取記錄筆數大於50筆的44個測站做迴歸分析,建立個別之單站地動預估式,單站地動預估式的總標準差比全域地動預估式之總標準差約下降2%~37%,平均約下降22%。花蓮地區之單站地動預估式的總標準差相較全域地動預估式之總標準的降低程度較多,宜蘭地區最少,可能來自其它無法解釋的震源及路徑效應。
The sigma (standard deviation) of ground-motion prediction equation (GMPE) has great impact on probabilistic seismic hazard analysis (PSHA). Therefore, how to properly evaluate the sigma has been a crucial issue currently. There are abundant earthquake data in Taiwan, and it is one of the most earthquake-related research suitable sites. In this study, we update the ground-motion relationship for north eastern Taiwan subduction zone earthquakes by establishing new sets of interface and intraslab earthquakes GMPE. Moreover, single-station GMPEs are done for the purpose of reduction of the sigma due to elimination of the variability from site effect.
In this study, ground-motion data of subduction zone for both interface and intraslab earthquakes are obtained from the Taiwan Strong-Motion Instrumentation Program (TSMIP). A total of 175 earthquakes and 14,660 records with moment magnitude greater than 4.0 are selected to establish PGA attenuation relationship. We chose the general usage of the functional forms by reviewing of previous studies. Each candidate term in the form was tested with Taiwan data set. The final form is generally similar to the form proposed by Lin and Lee (2008), besides a quadratic magnitude term, a VS30 term and a focal mechanism term were added. The coefficients of the equation are determined through non-linear regression analysis using maximum likelihood method (MLE) and mixed-effects model.
Generally speaking, ground-motion from subduction zone earthquakes decay slower and may spread longer distances. The results show that intraslab earthquakes generally predict higher PGA than that of interface earthquakes. Both regional GMPE and 44 single-station GMPEs are done in this study. Comparing the sigma of regional GMPE and single-station GMPEs, the total sigmas of single-station GMPE are smaller than the regional sigma with a reduction rate from 1.5% to 37.0%, averaging 21.7%. In a comparison of the reduction rate between different regions, the evaluated from stations in Hualien have highest reduction rate, whereas that evaluated from stations in Ilan are the lowest. Such a difference might be due to different source and path effects.
〔1〕 Seno, T., Stain, S. and Gripp, A. E., “A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data”, Journal of Geophysical Research., Vol. 98, No. B10, pp. 17,941-17,948, 1993.
〔2〕 Bommer, J. J. and Abrahamson, N. A., “Why do modern probabilistic seismic-hazard analyses often lead to increase hazard estimates?”, Bulletin of the Seismological Society of America, Vol. 96, No. 6, pp. 1967-1977, December 2006.
〔3〕 Youngs, R. R., Chiou, S.-J., Silva, W. J. and Humphrey, J. R., “Strong ground motion attenuation relationship for subduction zone earthquakes”, Seismological Research Letters, Vol. 68, No. 1, pp. 58-73, 1997.
〔4〕 Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H. K., Somerville, P. G., Fukushima, Y. and Fukushima, Y., “Attenuation relations of strong ground motion in Japan using site classification based on predominant period”, Bulletin of the Seismological Society of America, Vol. 96, No. 3, pp.898-913, 2006.
〔5〕 Lin, P. S. and Lee, C. T., “Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan”, Bulletin of the Seismological Society of America, Vol. 98, No. 1, pp. 220-240, 2008.
〔6〕 Hong, H. P., Pozos-Estrada, A. and Gomez, R., “Orientation effect on ground motion measurement for Mexican subduction earthquakes”, Earthquake engineering and engineering vibration, Vol. 8, No. 1, pp. 1-16, 2009.
〔7〕 Abrahamson, N., Gregor, N. and Addo, K., “BC Hydro Ground motion prediction equations for subduction earthquakes”, Earthquake Spectra, Vol. 32, No. 1, pp. 23-44, 2016.
〔8〕 Crouse, C. B., “Ground-motion attenuation equations for earthquakes on the Cascadia subduction zone”, Earthquake Spectra, Vol. 7, No. 2, pp. 201-236, 1991.
〔9〕 Kanai, K., Hirano, K., Yoshizawa, S. and Asada, T., “Observation of strong earthquake motions in Matsushiro area, Part 1”, Bulletin of Earthquake Research Institute, Vol. 44, pp. 1269-1296, 1966.
〔10〕 Fukushima, Y. and Tanaka, T., “A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan”, Bulletin of the Seismological Society of America, Vol. 80, No. 4, pp. 757-783, 1990.
〔11〕 Molas, G. L. and Yamazaki, F., “Attenuation of earthquake ground motion in Japan including deep Focus events”, Bulletin of the Seismological Society of America, Vol. 85, No. 5, pp. 1343-1358, 1995.
〔12〕 Abrahamson, N. A. and Youngs, R. R., “A stable algorithm for regression analyses using the random effects model”, Bulletin of the Seismological Society of America, Vol. 82, No. 1, pp. 505-510, 1992.
〔13〕 Joyner, W. B. and Boore, D. M., “Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial valley, California, earthquake”, Bulletin of the Seismological Society of America, Vol. 71, No. 6, pp. 2011-2038, 1981.
〔14〕 Ghofrani, H. and Atkinson, G. M., “Forearc versus backarc attenuation of earthquake ground motion”, Bulletin of the Seismological Society of America, Vol. 101, No. 6, pp. 3032-3045, 2011.
〔15〕 Chen, Y. H. and Tsai, C. C., “A new method for estimation of the attenuation relationship with variance components”, Bulletin of the Seismological Society of America, Vol. 92, No. 5, pp. 1984-1991, 2002.
〔16〕 Atkinson, G. M., “Single-station sigma”, Bulletin of the Seismological Society of America, Vol. 96, No. 2, pp. 446-455, 2006.
〔17〕 Rodriguez-Marek, A., Montalva, G. A., Cotton, F. and Bonilla, F., “Analysis of single-station standard deviation using KiK-net data”, Bulletin of the Seismological Society of America, Vol. 101, No. 3, pp. 1242-1258, 2011.
〔18〕 Lin, P. S., Chiou, B., Abrahamson, N., Walling, M., Lee, C. T. and Cheng, C. T., “Repeatable source, site, and path effects on the standard deviation for empirical ground motion prediction models”, Bulletin of the Seismological Society of America, Vol. 101, No. 5, pp. 2281-2295, 2011.
〔19〕 Chiou, S.-J. and Youngs, R. R., “An NGA model for the average horizontal component of peak ground motion and response spectra”, Earthquake Spectra, Vol. 24, No. 1, pp. 173-215, 2008.
〔20〕 Luzi, L., Bindi, D., Puglia, R., Pacor, F. and Oth, A., “Single station sigma for Italian strong-motion stations”, Bulletin of the Seismological Society of America, Vol. 104, No. 1, pp. 467-483, 2014.
〔21〕 高嘉謙,「單站地動預估式建立及場址特定地震危害度分析」,國立中央大學,碩士論文,民國104年。
〔22〕 Rau, R. J. and Wu, F. T., “Tomographic imaging of lithospheric structures under Taiwan”, Earth and Planetary Science Letters, Vol. 133, pp. 517-532, 1995.
〔23〕 沈聖書,「由波形逆推地震震源機制解探討台灣東北外海隱沒與碰撞構造之特性」,國立中央大學,碩士論文,民國85年。
〔24〕 陳燕玲,「台灣地區三維速度構造與隱沒構造之相關探討」,國立中央大學,碩士論文,民國84年。
〔25〕 Kao, H., Shen, S. S. and Ma, K. F., “Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region”, Journal of Geophysical Research, Vol. 103, No. B4, pp. 7211-7229, 1998.
〔26〕 Tichelaar, B. W. and Ruff, L. J., “Depth of seismic coupling along subduction zones”, Journal of Geophysical Research, Vol. 98, No. B2, pp. 2017-2037, 1993.
〔27〕 Cheng, C. T., Chiou, S. J., Lee, C. T. and Tsai, Y. B., “Study on probabilistic seismic hazard maps of Taiwan after Chi-chi earthquake”, Journal of GeoEngineering, Vol. 2, No. 1, pp. 19-28, 2007.
〔28〕 Wu, Y. M., Zhao, L., Chang, C. H. and Hsu, Y. J., “Focal-mechanism determination in Taiwan by genetic algorithm”, Bulletin of the Seismological Society of America, Vol. 98, No. 2, pp. 651-661, 2008.
〔29〕 Byrne, D. E., Davis, D. M. and Sykes, L. R., “Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones”, Tectonics, Vol. 7, No. 4, pp. 833-857, 1988.
〔30〕 Mohraz, B., “A study of earthquake response spectra for different geological conditions”, Bulletin of the Seismological Society of America, Vol. 66, No. 3, pp. 915-935, 1976.
〔31〕 Seed, H. B., Ugas, C. and Lysmer, J., “Site-dependent spectra for earthquake-resistant design”, Bulletin of the Seismological Society of America, Vol. 66, No. 1, pp. 221-243, 1976.
〔32〕 Anderson, J. G., Lee, Y., Zeng, Y. and Day, S., “Control of strong motion by the upper 30 meters”, Bulletin of the Seismological Society of America, Vol. 86, No. 6, pp. 1749-1759, 1996.
〔33〕 Lee, C. T. and Tsai, B. R., “Mapping Vs30 in Taiwan”, Terrestrial, Atmospheric and Oceanic Sciences, Vol. 19, No. 6, pp. 671-682, 2008.
〔34〕 Heaton, T. H., Tajima, F. and Mori, A. W., “Estimating ground motions using recorded accelerograms”, Surveys in Geophysics, Vol. 8, pp. 25-83, 1986.
〔35〕 Hanks, T. C. and Kanamori, H., “A moment magnitude scale”, Journal of Geophysical Research, Vol. 84, No. B5, pp. 2348-2350, 1979.
〔36〕 黃國欽、高弘、吳逸民,「台灣地區地震規模ML與MW之轉換關係」,第八屆台灣地區地球物理研討會論文集,193-201頁,2000年。
〔37〕 Wells, D. L. and Coppersmith, K. J., “New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement”, Bulletin of the Seismological Society of America, Vol. 84, No. 4, pp. 974-1002, 1994.
〔38〕 Lee, C. T., “Factors affecting topographic amplification- example from Taiwan”, EGU General Assembly, Vienna, Austria, April 2008.
〔39〕 Jibson, R., Summary of research on the effects of topographic amplification of earthquake shaking on slope stability, United States Geological Survey Menlo Park, Calif., Open File Report No. 87-268.
〔40〕 Celebi, M., “Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake”, Bulletin of the Seismological Society of America, Vol. 77, No. 4, pp. 1147-1167, 1987.
〔41〕 Ashford, S. A., Sitar, N., Lysmer, J. and Deng, N., “Topographic effects on the seismic response of steep slopes”, Bulletin of the Seismological Society of America, Vol. 87, No. 3, pp. 701-709, 1997.
〔42〕 Athanasopoulos, G. A., Pelekis, P. C. and Leonidou, E. A., “Effects of surface topography on seismic ground response in the Egion (Greece)15 June 1995 earthquake”, Soil Dynamics and Earthquake Engineering, Vol. 18, pp. 135-149, 1999.
〔43〕 Lee, C. T., Cheng, C. T., Liao, C. W. and Tsai, Y. B., “Site classification of Taiwan free-field strong-motion stations”, Bulletin of the Seismological Society of America, Vol. 91, No. 5, pp. 1283-1297, 2001.
〔44〕 Lee, C. T., Hsieh, B. S., Sung, C. H. and Lin, P. S., “Regional arias intensity attenuation relationship for Taiwan considering Vs30”, Bulletin of the Seismological Society of America, Vol. 102, No. 1, pp. 129-142, 2012.
〔45〕 Searle, S. R., Linear Models, John Wiley and Sons, New York, 1971.
〔46〕 Brillinger, D. R. and Preisler, H. K., “Further analysis of the Joyner-Boore sttenuation data”, Bulletin of the Seismological Society of America, Vol. 75, No. 2, pp. 611-614, 1985.
〔47〕 Youngs, R. R., Abrahamson, N. A., Makdisi, F. I. and Sadigh, K., “Magnitude-dependent variance of peak ground acceleration”, Bulletin of the Seismological Society of America, Vol. 85, No. 4, pp. 1161-1176, 1995.
〔48〕 Pinhriro, J., Bates, D., Debroy, S., Sarkar, D. and R Core Team, nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-124, 2016.
〔49〕 Atkinson, G. M. and Boore, D. M., “Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions”, Bulletin of the Seismological Society of America, Vol. 93, No. 4, pp. 1703-1729, 2003.
〔50〕 Skarlatoudis, A. A., Papazachos, C. B., Margaris, B. N., Ventouzi, C., Kalogeras, I. and EGELADOS Group, “Ground-motion prediction equations of intermediate-depth earthquakes in the Hellenic arc, southern Aegean subduction area”, Bulletin of the Seismological Society of America, Vol. 103, No. 3, pp. 1952-1968, 2013.