跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡友益
Yu-Yi Tsai
論文名稱: 砷化鎵增強/空乏型雙閘極高電子遷移率電晶體於微波/毫米波放大器設計
Microwave/Millimeter-wave Amplifier Design using GaAs Enhancement/Depletion Mode Dual-Gate pHEMT
指導教授: 詹益仁
Yi-Jen Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 90
中文關鍵詞: 增強/空乏型高電子遷移率電晶體放大器雙閘極砷化鎵
外文關鍵詞: amplifier, pHEMT, dual-gate, e/d mode
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線通訊的快速發展,相關的微波元件以及微波電路日趨重要。本論文主要討論雙閘極E/D-Mode pHEMT應用在射頻電路放大器的應用,由於雙閘極E/D-Mode pHEMT具有高fmax的特性以及製程上成本的優勢,目標是希望利用0.5 μm 雙閘極E/D-Mode pHEMT 實現0.15 μm pHEMT製程所製作的電路特性。
    第一章為整篇論文的導論,第二章分析雙閘極E/E 和E/D-Mode pHEMT元件的直流、高頻和功率等特性,以及利用實際的電路驗證雙閘極E/E 和E/D-Mode pHEMT元件應用在實際電路上的可行性;元件量測上,利用HP IC-CAP軟體,配合HP-4142B直流分析儀與HP-8510C網路分析儀量測元件的直流、高頻特性,此外,也利用實驗室的Maury load pull 系統,量測元件的功率特性;第三章討論利用雙閘極E/E 和E/D-Mode pHEMT元件所設計的Ka-band 微波增益放大器,驗證雙閘極E/E 和E/D-Mode pHEMT元件在高頻電路上的可行性,第四章則是利用Lange耦合器搭配兩個獨立的微波增益放大器實現平衡式Ku /K-band的微波增益放大器;第五章則是延續雙閘極的架構,利用0.15 μm pHEMT疊接的架構設計一個V-band 寬頻低雜訊放大器;第六章歸納本論結果,並做一個結論。


    The technology of the microwave is developed fast, the devices and the circuits about microwave is so important. We have studied the microwave/ millimeter-wave Amplifier Design using GaAs enhancement/depletion mode dual-gate pHEMT in the thesis. Because of the dual-gate E/D-Mode pHEMT owning the advantage of high fmax and low cost, we hope to design amplifier applied at high frequency using 0.5 μm dual-gate E/D-Mode pHEMT.
    In chapter two, we have analyzed the performance of the 0.5 μm dual-gate E/E and E/D-Mode pHEMT. In the chapter three and four, we have designed the amplifier applied at high frequency using 0.5 μm dual-gate E/E and E/D-Mode pHEMT.
    In chapter five, we have designed the V-band low noise amplifier using0.15 μm pHEMT according to dual-gate topology. In the final chapter, we summarized the results in this thesis.

    第一章 緒論 1 1-1 研究背景與動機 1 1-2 論文架構 2 第二章 雙閘極高電子遷移率場效電晶體元件特性探討與設計考量 4 2-1 簡介 4 2-2 雙閘極元件直流特性分析 4 2-2-1 雙閘極增強-增強型元件直流特性分析 4 2-2-2 雙閘極增強-空乏型元件直流特性分析 7 2-2-3 雙閘級增強-增強型與增強-空乏型直流特性比較 9 2-3 雙閘極元件高頻特性分析 11 2-3-1 雙閘極增強-增強型元件高頻特性分析 11 2-3-2 雙閘極增強-空乏型元件高頻特性分析 14 2-3-3 雙閘級增強-增強型與增強-空乏型高頻特性比較 16 2-4 雙閘極元件功率特性分析 17 2-4-1 雙閘極增強-增強型元件功率特性分析 17 2-4-2 雙閘極增強-空乏型元件功率特性分析 20 2-4-3雙閘級增強-增強型與增強-空乏型功率量測比較 22 第三章 Ka-Band微波增益放大器電路設計 24 3-1 簡介 24 3-2 Ka-Band微波增益放大器設計概念 24 3-3 Ka-Band微波增益放大器電路設計 26 3-3-1 Ka-Band微波增益放大器元件選擇 26 3-3-2 Ka-Band微波增益放大器設計方式 27 3-4 Ka-Band微波增益放大器模擬結果與佈局 29 3-4-1 Ka-Band微波增益放大器模擬結果 29 3-4-2 Ka-Band微波增益放大器佈局說明 31 3-5 Ka-Band微波增益放大器量測結果 32 3-6結果與討論 35 第四章 平衡式Ku /K-Band微波增益放大器設計 39 4-1 簡介 39 4-2 平衡式Ku /K-Band微波增益放大器設計概念 39 4-3 平衡式Ku /K-Band微波增益放大器設計 40 4-3-1 平衡式Ku /K-Band微波增益放大器架構簡介 40 4-3-2 Lange耦合器介紹與模擬及其量測結果 41 4-3-2 平衡式Ku /K-Band微波增益放大器設計方式 44 4-4 平衡式Ku /K-Band微波增益放大器模擬結果與佈局 47 4-4-1 平衡式Ku /K-Band微波增益放大器模擬結果 47 4-4-2 平衡式Ku /K-Band微波增益放大器佈局說明 50 4-5 平衡式Ku /K-Band微波增益放大器量測結果 51 4-6 結果與討論 56 第五章 V-Band疊接式寬頻低雜訊放大器應用與電路設計 57 5-1 簡介 57 5-2 V-Band發展與應用 57 5-3 V-Band疊接式寬頻式低雜訊放大器模擬結果與佈局 59 5-3-1架構說明 59 5-3-2 模擬結果 63 5-3-3 佈局說明 66 5-4 V-Band疊接式寬頻低雜訊放大器量測結果 67 5-5 結果與討論 70 第六章 結論 71 參考文獻 73

    [1] R. Hagelauer et.al, "A Gigasample/Second 5-b ADC with On-Chip Track and Hold Based on an Industrial 1-pm GaAs MESFET E/D Process", IEEE J. of Solid-State Circuits Vol.27, N0.10, pp.1313-1320 , 1993.
    [2] S. Feng et.al, "Statistical Characterization of GaAs E/D HEMT Analog Components for Data Conversion ICs", Proc. European GaAs and Related 111-V Compounds Applications symp., pp.169-172, 1994.
    [3] S. Feng et.al, "High Gain Operational Amplifier Implemented in 0.5 μm GaAs E/D HEMT Technology", IEEE Electronics Letters Vol.30, Issue 8, pp.636-637, 1994.
    [4] H. Tosaka et.al, "An Antenna Switch MMIC using E/D mode p-HEMT for GSM/DCS/PCS/WCDMA Bands Application", IEEE RFIC Symp., pp.519-522, 2003.
    [5] K. Kohama et.al “An Antenna Switch MMIC for GSM/UMTS handsets using E/D-mode JPHEMT Technology”, IEEE RFIC Sym., pp.509-512, 2005.
    [6] C. Yuen et.al,”5-60 GHz High-Gain Distributed Amplifier Utilizing InP cascode HEMTs”, IEEE Journal Solid-State Circuits Vol. 27, issue 10, pp.1434-1438, 1992
    [7] Y. Baeyens et.al, “GaAs and InP-based Dual-Gate HEMTs for High-Gain MMIC Amplifiers” IEEE, EDMO. No.10, pp.161-166, 1995.
    [8] J. A. Turner et.al, “Dual-Gate Gallium-Arsenide Microwave Field-Effect Transistor ” Electron. Lett., Vol.7, pp.661-662, 1971
    [9] C. Tsironis et.al, “Dual-Gate Mixers”, IEEE Trans. Microwave Theory Tech., Vol. 32, No.10, pp.248-255, 1984
    [10] P. T. Chen, “Dual-Gate GaAs FET as a Frequency Multiplier at Ku Band ”, IEEE MTT-S Int. Mictowave Symp. Dig., pp.309-311, 1978
    [11] W. C. Tsai,“An X-band Dual-Gate FET Up-Converter” IEEE MTT-S Int. Microwave Symp. Dig., pp.495-497, 1979
    [12] A. Rosen, “A Dual-Gate GaAs FET RF Power Limiter”, RCA Rev., Vol.38, pp.253-256, 1977
    [13] M. Kumar et.al, “Dual-Gate MESFET Variable-Gain Constant-output power amplifier”, IEEE Trans. Microwave Theory Tech., Vol.29, No.3 , pp.185-189, 1981
    [14] C. A. Liechti, “Performance of Dual-Gate GaAs MESFET as Gain-Controlled Low-Noise Amplifiers and High Speed Modulator” , IEEE Trans. Microwave Theory Tech., Vol.23, pp.461-465, 1975
    [15] M. Maeda et.al, “Microwave Variable Gain Amplifier with Dual-Gate GaAs FET”, IEEE Trans. Microwave Theory Tech., Vol.22, pp.1226-1230, 1974
    [16] K. Won et.al,”A GaAs-based 3-40 GHz Distributed Mixer with cascode FET cells” IEEE RFIC sym. pp.413-416, 2004
    [17] T. Furutsuka et.al,“GaAs Dual-Gate MESFET''s”, IEEE Trans. Electron Devices, Vol. 25, pp.580-586, 1978.
    [18] T. Tanimoto et.al, “Single-Voltage-Supply Highly Efficient E/D Dual-Gate Pseudomorphic Double-Hetero HEMT’s with Platinum Buried Gates ”, IEEE Trans. Electron Devices, Vol. 45, pp.1176-1182, 1998
    [19] E. Class et.al,” High Performance Single Supply Power Amplifiers for GSM and DCS Applications using true Enhancement mode FET Technology”, IEEE MTT-s Int. Microwave Symp., Dig., Vol.1, pp.557-560 2002.
    [20] W. Abey et.al,” A single Supply High Performance PA MMIC for
    GSM Handsets using Quasi-Enhancement mode PHEMT” IEEE MTT-s Int. Microwave Symp., Dig., Vol. 2, pp.923-926, 2001.
    [21] Y. H. Chow et.al, “A High Performance 2.4 GHz Linear Power Amplifier in Enhancement-mode GaAs pHEMTs Technology” 34th Microwave Conference European, Vol.1, pp.5-8, 2004.
    [22] C. K. Chu et.al, “A 3.3 V Self-Biased 2.4-2.5GHz high linearity PHEMT MMIC Power Amplifier”, IEEE Solid-State Circuits Conference, pp.667-670, 2003.
    [23] P. Min et.al,” Single Supply, High Linearity, High Efficient PHEMT Power Devices and Amplifier for 2 GHz & 5 GHz WLAN Applications” ,33th Microwave Conference European, Vol. 1, pp.371-374, 2003.
    [24] T. Quach et.al, “A High Efficiency Commercial GaAs MESFET Power Amplifier for PCM/CIA Applications at 2.45 GHz,” Proceedings of Gallium Arsenide Integrated Circuit Symposium, pp.179-182, 1994.
    [25] 王志偉“增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用”國立中央大學電機工程研究所論文,pp.41-57 民國91年。
    [26] 吳佳賢”雙閘極高電子遷移率電晶體之研究及其在單晶微波積體電路之應用”國立中央大學電機工程研究所論文 民國95年
    [27] A. Ezzeddine et.al, ”The High Voltage/High Power FET”,2003 IEEE MTT-S Int. Microwave Symp., Dig., Vol.1, pp.215-218, 2003.
    [28] A. Inoue, et.al, ”A High Efficiency, High Voltage, Balanced Cascode FET,”, IEEE MTT-S Int. Microwave Symp. Dig., pp.669-672, 2005.
    [29]G. Dambrine et.al, “A new method to determining the FET small-signal circuit”, IEEE Trans. Microwave Theory Tech., Vol. 36, No .7, pp.1151 1988.
    [30] L. Yang et.al, “New Method to Measure Source and Drain Resistance of the GaAs MESFET Model”, IEEE Electron Device Lett. Vol .EDL-7, pp.75-77, 1986.
    [31] W. Curtice et.al, “A Nonlinear GaAs FET Model for uses in the Design of Output Circuit for Power Amplifiers”, IEEE Trans. Microwave Theory Tech. , Vol.32 MTT-33 No. 12, pp. 183, 1985.
    [32] Y. H. Chun et.al, “Design of an RF Low-Noise Bandpass Filter Using Active Capacitance Circuit”, IEEE Trans. Microwave Theory Tech., Vol. 53, No 2, pp 687-695 2005.
    [33] C.Tsironis et.al, “Dual-Gate MESFET Mixers”, IEEE Trans. Microwave Theory Tech., Vol. 32, No .3, pp248-255 1984.
    [34] M.Nishijima, “ A K-band AlGaN/GaN HFET MMIC Amplifier on Sapphire using Novel Superlattice Cap Layer.”, IEEE MTT-s Int. Miicrowave symp.pp.299-302 2005
    [35] K. Y. Lin et.al, “K-Band monolithic GaAs PHEMT amplifiers” IEEE APMC. pp.153-156, 2000
    [36] J. M. Schellenberg, “1 and 2 Watt MMIC Power Amplifiers for Commercial K/Ka-band Applications”, IEEE MTT-s Int. Miicrowave symp., pp.445-448, 2002
    [37] S. F. Wei; et.al, “A Monolithic K-band MMIC Receiver”, IEEE APMC., pp. 299-302, 2001
    [38] C. S. Whelan et.al, ”Millimeter-Wave Low-Noise and High-Power Metamorphic HEMT Amplifiers and Devices on GaAs substrates”, IEEE JSSC., Vol. 35 pp.1307-1311, 2000
    [39]David M. Pozar”Microwave Engineering”John Wiley & Sons,Inc. 2005
    [40] Adel S. Sedra /Kenneth C.Smith, ”Microelectronic Circuits 5/e ”, Oxford University Press 2004
    [41] Donald A.Neamen”Semiconductor Physics and Devices Basic Principles”McGraw-Hill company 2003
    [42] Allen A. Sweet”MIC & MMIC AMPLIFIER AND OSCILLATOR CIRCUIT DESIGN”Artech Hose 1990
    [43] E. Sten et.al, ”Highly Integrated 60 GHz Transmitter and Receiver
    MMICs in a GaAs pHEMT Technology”, IEEE Journal of Solid-State Circuits, Vol.40, NO.11 pp657-701, 2005
    [44] P. BOURNE et.al, “35 GHz AND 60 GHZ LOW NOISE HEM" MMIC AMPLIFIERS FOR CML APPLICATIONS”, IEEE MTT-S Digest, 1992
    [45] M. Austet.al, ”A Family of InGaAs/AlGaAs V-Band Monolithic HEMT LNA’s” IEEE GaAs IC, 1989
    [46] K. H. GEORGE et.al, ”High-Performance Ka-Band and V-Band HEMT Low-Noise Amplifiers”, IEEE Trans. Microwave Theory Tech.,Vol.36, NO.12, pp.442-445, 1988
    [47] Y. MIMINO et.al, ” A 60 GHz Millimeter-wave MMIC Chipset for Broadband Wireless Access System Front-end”, IEEE MTT-S Digest, 2002
    [48] O. Vaudescal et.al, ” A Highly Integrated MMIC Chipset for 60 GHz Broadband Wireless Applications”, IEEE MTT-S Digest, 2002
    [49] L. Tran et.al,”High Performance, High Yield Millimeter-Wave MMIC LNAs Using InP HEMTs” IEEE MTT-S Digest, 1996
    [50] P. Gamand et.al, “Monolithic millimeter-wave amplifiers” Electron. Lett., Vol.25, NO. 7 pp.451-453, 1989
    [51] C. Yuen et.al, “High-gain Low-Noise Monolithic HEMT Distributed Amplifiers up to 60GHz” IEEE 1990 MMWMC Symp. Digest, pp.23-26 , 1990
    [52] A. Inoue et.al, “A High Efficiency, High Voltage, Balanced Cascode FET,” IEEE MTT-S Int. Microwave Symp. Dig., pp.669-672, 2005.

    QR CODE
    :::