| 研究生: |
魏渝文 Yu-Wen Wei |
|---|---|
| 論文名稱: |
三維瀝青鋪面含有橫向裂縫應力強度因子分析 |
| 指導教授: |
張瑞宏
Jui-Hung chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 裂縫開口位移 、位移相關技術 、位移相關法 、應力強度因子 、瀝青鋪面裂縫 、由上至下的裂縫 |
| 外文關鍵詞: | crack opening displacement, displacement correlation technique, displacement correlation method, stress intensity factors, cracked asphalt pavement, top down crack |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為有限元素法用於三維瀝青鋪面含有由上至下之橫向裂縫進行破壞參數分析,考慮四輪車之輪重作用在不同行車方向之位置,計算出三種模態所對應的應力強度因子。其中計算方法共採用位移相關法和迴圈積分進行求解。根據計算結果顯示單顆輪重作用於橫向裂縫上,會有最大的KI值產生,其數值遠高於相同輪重作用下之KII與KIII值。
由於位移相關法之應用,其理論直觀,使用上直截了當,因此數值分析上需考慮網格劃分和元素類型之影響,本研究也會針對位移相關法所計算出的應力強度因子,進行準確度分析,驗證其方法之可行性。
而目前的相關文獻並沒有一個完整的數值分析與實驗成果可作為驗證之依據,因此本論文對於三維瀝青鋪面裂縫之研究希望能為後續的研究提供一個研究分析方向。
The study is investigated for fracture parameters analysis of a 3D asphalt pavement containing a transverse top-down crack using finite element method. Consider the four-wheels of the vehicle load is located at different traffic direction and calculate the stress intensity factors of three type mode. The approach of calculating stress intensity factors has been evaluated by using displacement correlation method and contour integrals. According to the calculation results, the maximum value of KI occurred to one of wheels load located on the transverse crack. Under the above-mentioned vehicle load effect, its value is higher than the values of KII and KIII.
For the calculation approach, the displacement correlation method belong to the straightforward method which is computationally cheap and easy to implement. Therefore, it should be note that, the pre-processing associated with both the mesh partition of the near-crack region and the effect of using element type are required. In addition to calculating of the stress intensity factors by the displacement correlation method, this study has also been calculated the accuracy analysis and investigated the feasibility of this approach.
To the authors’ knowledge, the current reference doesn’t has the numerical analysis and the experimental results are proposed the complete verification. Therefore, this paper for the cracked asphalt pavement is proposed the goals of follow-up study.
[1]LUO Rui, HUANG Xiao-Ming. Calculation on the stress intensity factor for the bottom crack of asphalt layer in asphalt pavement considering partial constraint by weight function. 岩土工程學報, 2001;23(5):610-613.
[2]MAO Cheng, QIU Yan-Jun, LI Yun-Peng. Simulation of Surface Crack Propagation in Asphalt Pavements and Analysis of Its Influential Factors. Journal of Southwest Jiaotong University, 2004;39(4):437-441.
[3]M. Ameri, A. Mansourian, M. Heidary Khavas, M.R.M.Aliha, M.R. Ayatollahi. Cracked asphalt pavement under traffic loading – A 3D finite element analysis. Engineering Fracture Mechanics, 2011;78(8):1817-1826.
[4]Chen Y.Z. Stress intensity factors for curved and kinked cracks in plane extension. Theoretical and Applied Fracture Mechanics, 1999;31(3):223-232.
[5]Jeong-Ho Kim, Glaucio H. Paulino. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. View issue TOC, 2002;53(8):1903-1935.
[6]L.J. Gray, A.-V. Phan, Glaucio H. Paulino, T. Kaplan a. Improved quarter-point crack tip element. Engineering Fracture Mechanics, 2003;70(2):269-283.
[7]Morteza Nejati, Adriana Paluszny, Robert W. Zimmerman. On the use of quarter-point tetrahedral finite elements in linear elastic fracture mechanics. Engineering Fracture Mechanics, 2015;144:194-221.
[8]Williams ML. Stress singularities resulting from various boundary conditions in angular corners of plates in extension. SIAM Journal of Applied Mathematics, 1952;19:526-8.
[9]Williams ML. On the stress distribution at the base of a stationary crack. SIAM Journal of Applied Mathematics, 1957;24:109-14.
[10]Gray LJ, Paulino GH. Crack tip interpolation, revisited. SIAM Journal of Applied Mathematics, 1998;58(2):428-455.
[11]Cotterell B, Rice JR. Slightly curved or kinked cracks. International Journal of Fracture, 1980;16(2):155-69.
[12]C.G. Hwang, P.A. Wawrzynek, A.R. Ingraffea. On the virtual crack extension method for calculating the derivatives of energy release rates for a 3D planar crack of arbitrary shape under mode-I loading. Engineering Fracture Mechanics, 2001;68(7):925-947.