跳到主要內容

簡易檢索 / 詳目顯示

研究生: 方友群
Yu-Chun Fang
論文名稱: 豐枯水期、位移事件與電阻率變化率間的關係:以宜蘭太平山蘭台地區為例
Relationships between Wet/Dry Season, Displacement Events, and Variations in Electrical Resistivity: Case Study in the Lantai area, Taiping Mountain, Yilan, Northeast Taiwan
指導教授: 陳建志
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 127
中文關鍵詞: 地電阻影像剖面法大規模崩塌山崩監測
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用一種多波道的直流電阻法與自然電位法監測系統(R2MS)對位於台灣宜蘭縣大同鄉太平山蘭台地區的一處大規模崩塌區域以不同於傳統電極陣列的混編陣列進行連續的地電阻影像剖面法監測,收集自2022年十月底到2023年十月底之電阻率剖面資料,並結合現地之鑽井岩芯、雨量、地下水位,以及地表與孔內伸縮計的觀測數據進行分析。結果發現電阻率剖面符合現地鑽井資料,顯示地電阻影像剖面法於大規模崩塌區可以有良好的解析能力。
      觀察相同時間段的月雨量變化,發現於2022年十二月至2023年六月的降水符合由豐水轉枯水;枯水轉豐水的變化行為,因此使用該時間段的月平均電阻率剖面進行每月電阻率差異率剖面分析。其結果顯示出表土崩積層與疑似剪切帶之區域具有豐枯水期的變化特徵,其變化率約在百分之十五至百分之二十五間,符合相關的物理現象。
      本研究在2023年八月中至九月初於地表與孔內伸縮計資料中發現位移現象,並利用日平均電阻率變化率平均剖面等方式進行分析,其結果發現於疑似剪切帶區域於短時間內出現約百分之二十五的變化率,顯示出地電阻影像剖面法對於崩塌地的位移事件亦能有良好的反應。此外,本研究亦將該結果與該研究區域於2020夏季發生的小規模滑移事件進行比較,認為兩事件之間電阻率變化率差異可能由2020的事件影響時間較長,與較大的地下位移造成。最後,本研究根據上述成果,建議若短時間同一天同一區域對其他天的電阻率變化率皆超過百分之二十五,便可研議發布崩塌警戒,期以為大規模崩塌預警系統提供貢獻。


    This study uses a Remote Resistivity Monitoring System (R2MS) to monitor a large-scale landslide area in the Lantai area of Taiping Mountain, Datong Township, Yilan County, Taiwan, using a mixed array different from the traditional array. By continuous electrical resistivity tomography (ERT) monitoring, this study collects resistivity profile data from the end of October 2022 to the end of October 2023 and combines it with on-site core samples, precipitation, groundwater levels, and observations from the surface and in-hole linear wire potentiometers data are analyzed. The results showed that the resistivity profile is consistent with the existing core samples.
    By observing the changes in monthly rainfall during the same period, it was found that the precipitation from December 2022 to June 2023 fit with the changed behavior of the wet/dry season. Thus, the change rate profiles of the monthly average resistivity of this period were used. The results show that the resistivity of the colluvium layer and the area of the suspected shear zone have the changing characteristics of wet and dry periods, consistent with relevant physical imagination.
    This study found the displacement in the surface and in-hole linear wire potentiometer data from mid-August to the beginning of September 2023. It analyzed this event using the daily average resistivity change rate average profile. The results show that the ERT method responds well to displacement events. In addition, this study also compares the result with the small-scale slip event that occurred in the study area in the summer of 2020 and gives possible reasons for the difference in resistivity change rates between the two events. It shows that continuous ERT monitoring has the potential to contribute to the tectonic changes and mechanisms of landslide occurrence.

    摘要  i Abstract ii 目錄  iii 圖目錄 vi 表目錄 viii 一、  緒論 1   1-1    研究動機與目的 1    1-2  前人研究 2    1-3   研究場址概述 3 二、  研究原理與方法 7    2-1   地電阻影像剖面法 7    2-2    儀器設備 9    2-3    電極陣列配置 11    2-4    雨量、地下水位及地工資料觀測 12    2-5    雨量與地下水位轉換公式 13 三、  資料處理流程 22    3-1    地電阻原始資料處理 22    3-2    電阻值資料篩選 23    3-3    電阻率剖面逆推 23     3-3-1  逆推理論簡介 24     3-3-2  中位數電阻率剖面計算流程 26    3-4    日平均電阻率變化率平均剖面計算流程 26 四、  結果與討論 41    4-1    岩芯與電阻率剖面對照 41    4-2    豐枯水期與電阻率變化討論:以2023年上半年資料為例 42    4-3    位移事件討論(一):2023伸縮計變化事件 43    4-4    位移事件討論(二):2023伸張計變化事件與2020 SAA位移事件對比 45    4-5    豐枯水期與位移事件之電阻率順推模擬 47 五、  結論 66 參考文獻 70 附錄 75

    1. Advanced Geosciences, I. (2009). Instruction manual for EarthImager 2D, version 2.4.0, Advanced Geosciences Inc.
    2. Aster, R. C., et al. (2018). Parameter estimation and inverse problems, Elsevier.
    3. Brunet, P., et al. (2010). "Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)–A case study in the Cevennes area, France." Journal of Hydrology 380(1-2): 146-153.
    4. Chambers, J., et al. (2014). "4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment." Near Surface Geophysics 12(1): 61-72.
    5. Chambers, J. E., et al. (2006). "Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site." Geophysics 71(6): B231-B239.
    6. Chiang, C.-W., et al. (2010). "The deep electrical structure of southern Taiwan and its tectonic implications." TAO: Terrestrial, Atmospheric and Oceanic Sciences 21(6): 8.
    7. Chien, F. C. and H. C. Kuo (2011). "On the extreme rainfall of Typhoon Morakot (2009)." Journal of Geophysical Research: Atmospheres 116(D5).
    8. Constable, S. C., et al. (1987). "Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data." Geophysics 52(3): 289-300.
    9. Cruden, D. (1991). "A simple definition of a landslide." Bulletin of Engineering Geology & the Environment 43(1).
    10. Dai, F., et al. (2002). "Landslide risk assessment and management: an overview." Engineering geology 64(1): 65-87.
    11. Drahor, M. G., et al. (2006). "Application of electrical resistivity tomography technique forinvestigation of landslides: a case from Turkey." Environmental Geology 50: 147-155.
    12. Falco, P., et al. (2013). "Fracture characterisation using geoelectric null-arrays." Journal of Applied Geophysics 93: 33-42.
    13. Guzzetti, F., et al. (2012). "Landslide inventory maps: New tools for an old problem." Earth-Science Reviews 112(1-2): 42-66.
    14. Henny, L., et al. (2021). "Extreme rainfall in Taiwan: Seasonal statistics and trends." Journal of Climate 34(12): 4711-4731.
    15. Ho, C. S. (1986). "A synthesis of the geologic evolution of Taiwan." Tectonophysics 125(1): 1-16.
    16. Huang, W.-C., et al. (2012). "The impact of climate change on rainfall frequency in Taiwan." Terr. Atmos. Ocean. Sci 10.
    17. Jodry, C., et al. (2019). "2D-ERT monitoring of soil moisture seasonal behaviour in a river levee: A case study." Journal of Applied Geophysics 167: 140-151.
    18. Jongmans, D. and S. Garambois (2007). "Geophysical investigation of landslides: a review." Bulletin de la Société géologique de France 178(2): 101-112.
    19. Kemna, A., et al. (2002). "Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models." Journal of Hydrology 267(3-4): 125-146.
    20. Kornei, K. (2019). A massive experiment in Taiwan aims to reveal landslides’ surprising effect on the climate. Science. doi: 10.1126/science.aba2653.
    21. Lapenna, V. and A. Perrone (2022). "Time-lapse electrical resistivity tomography (TL-ERT) for landslide monitoring: Recent advances and future directions." Applied Sciences 12(3): 1425.
    22. Lin, M., et al. (2017). "Evolution and stability analysis of a deep-seated landslide in Lantai area, Taiwan. " Geotechnical Hazard Mitigations: Experiment, Theory and Practice—Proceedings of the 5th International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation.
    23. Muhammad, S., et al. (2022). "Spatial appraisal of aquifer characterization through hydrogeophysical investigations in central part of Bari Doab, Punjab, Pakistan." Environmental Monitoring and Assessment 194.
    24. Okpoli, C. C. (2013). "Sensitivity and Resolution Capacity of Electrode Configurations." International Journal of Geophysics 2013: 608037.
    25. Perrone, A., et al. (2014). "Electrical resistivity tomography technique for landslide investigation: A review." Earth-Science Reviews 135: 65-82.
    26. Petley, D. N., et al. (2005). "The use of surface monitoring data for the interpretation of landslide movement patterns." Geomorphology 66(1): 133-147.
    27. Suppe, J. (1981). "Mechanics of mountain building and metamorphism in Taiwan." Memoir of the Geological Society of China (Taiwan) 4: 67-89.
    28. Szalai, S. and L. Szarka (2008). "On the classification of surface geoelectric arrays." Geophysical Prospecting 56(2): 159-175.
    29. Szalai, S., et al. (2020). "An alternative way in electrical resistivity prospection: the quasi-null arrays." Geophysical Journal International 220(3): 1463-1480.
    30. Tsai, W.-N., et al. (2021). "Electrical Resistivity Tomography (ERT) Monitoring for Landslides: Case Study in the Lantai Area, Yilan Taiping Mountain, Northeast Taiwan." Frontiers in Earth Science 9.
    31. Tsou, C.-Y., et al. (2011). "Catastrophic landslide induced by typhoon Morakot, Shiaolin, Taiwan." Geomorphology 127(3-4): 166-178.
    32. Vogel, C. R. (2002). Computational methods for inverse problems, SIAM.
    33. 三聯科技:VW 電子式水壓計。2024年,取自https://www.sanlien.com.tw/product/vw-%E9%9B%BB%E5%AD%90%E5%BC%8F%E6%B0%B4%E5%A3%93%E8%A8%88/
    34. 中華民國行政院交通部中央氣象署: 111年度氣象年報(中文)。 2023年,取自https://www.cwa.gov.tw/Data/service/notice/download/Publish_20230922095829.pdf.
    35. 王國隆等,108年蘭台大規模崩塌潛勢示範區觀測科技整合與分析期末報告書。行政院農業部農村發展及水土保持署,2020年。
    36. 王國隆等,112年蘭台大規模崩塌潛勢示範區觀測科技整合研究期末報告書。行政院農業部農村發展及水土保持署,2024年。
    37. 朱佾蓁,「利用地電阻影像法計算水文地質參數:以屏東平原為例」,國立中央大學,碩士論文,2020年。
    38. 吳秉昀,「地電阻影像法於海岸生物礁調查之研究—以桃園觀音區為例」,國立中央大學,碩士論文,2017年。
    39. 林敬文與林偉雄,五萬分之一臺灣地質圖--三星圖幅,第十五號,行政院經濟部地質調查及礦業管理中心,1995年。
    40. 林慶偉等,「106 年大規模崩塌多元多尺度綜合監測, 資料綜整分析與滑動機制研究: 以太平山蘭台地區為例 (III)-大規模崩塌多元多尺度綜合監測, 資料綜整分析與滑動機制研究: 以太平山蘭台地區為例 (III)」,科技部專題研究計畫,2017年。
    41.夏國強,「蘭台地區坡地崩塌演化與破壞機制分析」,國立臺灣大學,碩士論文,2016年。
    42. 許芳鳴,「以地電阻影像法探討地滑敏感區電阻率構造與環境因子之關係」,國立中央大學,碩士論文,2015年
    43. 許家寅,「利用地電阻影像法推估降雨入滲範圍:以台中霧峰農地為例」,國立中央大學,碩士論文,2023年。
    44. 陳均,「耦合水熱電模型優化降雨入滲模擬」,國立中央大學,碩士論文,2023年。
    45. 曾長生,「宜蘭縣清水及土場區地質及地熱產狀」,台灣石油地質,第十五號,205~204頁,1978年。
    46. 黃至用,「宜專一線公路蘭台苗圃地區地滑案之研究」,國立宜蘭大學,碩士論文,2011年。
    47.行政院農業部農村發展及水土保持署:土石流及大規模崩塌防災資訊網,2024年,取自https://246.ardswc.gov.tw/.
    48. 蔡武男,「電阻率變化與降雨間關係及其對於山崩的影響:以宜蘭太平山蘭台地區為例」, 國立中央大學,碩士論文,2021年。

    QR CODE
    :::