| 研究生: |
李果穎 Kuo-Ying Lee |
|---|---|
| 論文名稱: |
K波段地面鏈路降雨衰減效應之研究 An Experiment of K Band Terrestrial Propagation Through Rain |
| 指導教授: |
陳錕山
Kun-Shan Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 地面鏈路 、降雨衰減 、K波段 |
| 外文關鍵詞: | Terrestrial Propagation, Rain Attenuation, K Band |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不過由於此一波段在地表大氣通道傳播時,容易受到各項大氣環境因素的影響(如雲、雨滴、冰雹)而產生訊號衰減與去極化等不穩定的現象,因此無線傳輸環境之研究成為重要的課題。其中又以降雨衰減的影響最為顯著。
因此,本論文就是針對降雨衰減效應作一研究,量測及統計在中壢地區的降雨現象對於微波地面鏈路傳輸系統訊號衰減的情形,並嘗試對台灣北、中、南之大都會地區(台北、台中、高雄)的降雨衰減現象作評估。
本研究結果顯示:經過實驗比較之後,ITU(國際電信聯盟) 建議的雨衰預測模式與學者Robert K. Crane所提供的Global模式皆低估了台灣地區雨衰效應之影響。
In this study, we conducted a research on K band terrestrial propagation system to measure the rain attenuation in Chungli. We also made an estimation of rain attenuation in 3 metropolises in Taiwan (Taipei, Taichung, and Kaoshung).
The results show that ITU-R’s rain attenuation prediction model and Robert K. Crane’s Global model both make underestimates of the rain attenuation in Taiwan.
[1]Balanis, C. A., ”Antenna Theory 2nd Edition,” Wiley, 1997.
[2]Bussey, H. E., “Microwave Attenuation Statistics Estimated from Rainfall and Water Vapor Statistics,” Proc. IRE, pp. 781-185, 1950.
[3]Crane, R. K., “Electromagnetic Wave Propagation Through Rain,” Wiley, 1996.
[4]Crane, R. K., ”Propagation Phenomena Affecting Satellite Communication Systems Operating in the Centimeter and Millimeter Wavelength Bands,” Proc. IEEE, vol.59, pp. 173-188, Feb 1971.
[5]Crane, R. K., ”Automatic Cell Detection and Tracking,” IEEE Trans. Geosci. Electronic., GE —17, 250-262, 1979.
[6]Crane, R. K., ”Prediction of Attenuation by Rain,” IEEE Trans. Commun., COM-28(9), 1717-1733, 1980.
[7]Crane, R. K., ” Evaluation of Global Model and CCIR Models for Estimation of Rain Rate Statistics,” Radio Sci., 20(4), 865-879,1985b.
[8]Crane, R. K., ”A Two-Component Rain Model for the Prediction of Attenuation Statistics,” Radio Sci., 17(6), 1371-1387,1982.
[9]ITU-R Rec. 530-8, International Telecommuication Union.
[10]ITU-R Rec. 837-1, International Telecommuication Union.
[11]ITU-R Rec. 838, International Telecommuication Union.
[12]Olsen et al., “The aRb Relation in the Calculation of Rain Attenuation,” IEEE Trans. Antenna and Propagation, vol. AP-26, NO.2 March 1987.
[13]Moupfouma, F., ”Model of Rain Rate Distribution for Radio System Design,” IEE Proc., 134, Pt.H, (6) 527-537,1987.
[14]Moupfouma, F. et al., “ Modeling of the Rainfall Rate Cumulative Distribution for The Design of Satellite and Terrestrial Communication Systems,” Int. Journal of Satellite Communications, vol. 13, 105-115, 1995.
[15]Moupfouma, F. et al., “ A New Theoretical Formulation for Calculation of The Specific Attenuation due to Precipitation Particles on Terrestrial and Satellite Radio Links,” Int. Journal of Satellite Communications, vol. 15, 89-99, 1997.
[16]Segal, B., “The Influence of Raingage Integration Time on Measured Rainfall-Intensity Distribution Functions,” J. At. Ocean., Tech. Dec.1986.
[17]Xu, Hao et al., “Measurments and Models for 38-GHz Point-to-Multipoint Radiowave Propagation,” IEEE J. Selected Areas in Communications, vol. 18, NO. 3, March 2000.
[18]Crane, R. K., “A Global Model for Rain Attenuation Prediction,” EASCON’78” Record, IEEE Pub, 78CH 1354-4 AES, Arlington, VA, Sept 1978.
[19]Chebil et al., “Rain Rate Statistical Conversion for the Prediction of Rain Attenuation in Malaysia,” Electronics Letters, 10th June 1999 vol. 35 NO.12.
[20]鞠志遠, “ 中壢地區Ka波段地面鏈路降雨衰減實驗,” 國立中央大學太空科學研究所碩士論文, 1998.
[21]Karasawa, Y. et al., ” One-Minute Rain Rate Distributions in Japan Derived from AMeDAS One-Hour Rain Rate Date,” IEEE Trans. GEO. Remote Sensing, vol. 29, NO. 6, Nov. 1991.
[22]Yeo, T. S. et al., “ A Two-Year Measurement of Rainfall Attenuation of CW Microwave in Singapore,” IEEE Trans. Antenna and Propagation, vol. 41, NO. 6. June 1993.