跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡國柱
Kuo-Chu Hu
論文名稱: 基於多重感測器之模糊判定的汽車駕駛行為分析
Driver Behavior Analysis based on The Multi-Sensor Fuzzy Decision
指導教授: 曾定章
Din-Chang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 91
中文關鍵詞: 駕駛行為分析模糊邏輯理論慣性感測元件嵌入式系統
外文關鍵詞: Driver behavior analysis, fuzzy logical theory, inertial sensors, embedded system
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們發展了一個以慣性感測器為基礎的汽車駕駛行為分析系統。此系統可以讓我們偵測出車輛的加速、減速、左轉、與右轉等事件狀況是否為正常行駛或是激烈行駛;另外,我們也可以偵測車輛行駛中的路面是否過於顛簸。
    我們使用了開放式軟硬體平台Arduino作為運算的核心,並搭配了三軸加速度計與三軸陀螺儀等慣性感測元件作為分析信號的來源。我們在感測信號的前置處理上,除了事先校正量測誤差之外,也採用了數位低通濾波器以濾除一些車輛引擎或路面所帶來的震動干擾。
    為了能夠更可靠的偵測出駕駛行為的多種事件,使用了以模糊邏輯理論做為分析基礎的判斷方法。模糊邏輯包含了梯形歸屬函數模糊化、最大最小合成法、及重心解模糊等主要步驟。經過以上步驟後,我們最後依據各邏輯判斷的結果得到一個正確的駕駛事件分類。
    最後實際於車輛上的實驗中,以2個人做為乘客,分別紀錄乘坐在車內之車輛行駛狀況;再與模糊邏輯的駕駛行為分析系統所產生的事件比對,驗證了我們的系統確實可以成功的偵測到各種不同的駕駛行為事件,其判定的結果也與乘客的認知接近。


    In this thesis, we have developed an inertial sensor-based automobile driver behavior analysis system. This system can help us to detect if a car is in a normal or extreme driving condition during vehicle acceleration, deceleration, and left or right turning.
    We used an Arduino open hardware and software platform core, and a three-axis accelerometer and three-axis gyroscope inertial sensing element analysis as a source of the signal. In the pre-processing of the sensed signals we used a digital low pass filter to filter out some of the vehicle engine or road surface interference caused by vibration. This was done in addition to previous measurement error correction.
    To be able to more reliably detect a variety of driving behavior events, we used the fuzzy logic theory as the basis of our analytic judgment. Fuzzy logic includes fuzzy membership function, the main step synthesis, and the maximum and minimum gravity defuzzification. After the above steps, we finally got a proper driving event classification based on the results of each logic judgment.
    Finally, we conduct experiments on a vehicle. Two passengers in a running vehicle record the vehicle status sequences. The status sequences were compared with those generated by the proposed behavior analysis system based on the fuzzy logic theory. The experiments results validate that indeed the system can successfully detect various driving behavior events; the results generated by the proposed system are consistent with the determination of cognitive passengers.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1. 研究動機 1 1.2. 系統架構 3 1.3. 論文架構 4 第二章 相關研究 5 2.1. 慣性感測器的應用 5 2.2. 車輛駕駛行為偵測系統 10 2.3. 模糊邏輯理論 14 2.3.1. 基本概念 14 2.3.2. 模糊集合運算 16 2.3.3. 模糊系統 18 第三章 系統硬體架構 24 3.1. 硬體架構 24 3.2. 加速度計原理 25 3.3. 陀螺儀原理 26 3.4. 磁力計原理 27 3.5. I2C介面通訊 27 3.6. Arduino 整合開發環境 31 第四章 駕駛行為分析 33 4.1. 車輛方向定義 33 4.2. 事件分類 34 4.2.1. 車輛加速事件 34 4.2.2. 車輛減速事件 35 4.2.3. 車輛轉彎事件 35 4.2.4. 路面顛簸事件 36 4.3. 模糊邏輯 36 4.3.1. 定義模糊集合與歸屬函數 37 4.3.2. 建立模糊規則庫與推論引擎 42 4.3.3. 解模糊化 44 4.4. 駕駛行為判定 45 4.5. 感測器數值處理 47 4.6. 校正流程 49 4.7. 數位濾波器 51 第五章 實驗及結果 53 5.1. 實驗環境 53 5.2. 實驗結果 54 5.2.1. 校正程序實驗 54 5.2.2. 加減速實驗 54 5.2.3. 左右轉實驗 59 5.2.4. 顛簸路面實驗 68 第六章 結論 73 參考文獻 75

    [1] Accident and Traffic Rules & Regulation, Top 25 Causes of Car Accidents, in https://accidentviews.wordpress.com, 2012.
    [2] Arduino, in http://www.arduino.cc/
    [3] Bartz, P., Building An AHRS Using The SparkFun 9DOF-Razor-IMU or 9DOF-Sensor-Stick, Report of AHRS in https://github.com/ptrbrtz/razor-9dof-ahrs/wiki/Tutorial
    [4] Boonmee, S. and P. Tangamchit, "Portable reckless driving detection system," in Proc. IEEE Int. Conf. on Electrical Engineer /Electronics, Computer, Telecommunications and Information Technology, Chonburi, Thailand, May 6-9, 2009, pp.412-415.
    [5] Dai, J., J. Teng, X. Bai, Z. Shen, and D. Xuan, "Mobile phone based drunk driving detection," in Proc. of Int. Conf. on Pervasive Computing Technologies for Healthcare, Munich, Germany, Mar.22-25, 2010, pp.1-8.
    [6] Honeywell, Compass Heading Using Magnetometers, Application Note 203, in http://www.honeywell.com, 1995
    [7] Imkamon, T., P. Saensom, P. Tangamchit, and P. Pongpaibool, "Detection of hazardous driving behavior using fuzzy logic," in Proc. IEEE Int. Conf. on Electrical Engineer/Electronics, Computer,Tel. and Information Technology, Krabi, Thailand, May 14-17, 2008, pp. 657-660.
    [8] Johnson, D. A. and M. M. Trivedi, "Driving style recognition using a smartphone as a sensor platform," in Proc. Int. IEEE Conf. on Intelligent Transportation Systems, Washington DC, Oct.5-7, 2011, pp.1609-1615.
    [9] Langle, L. and R. Dantu, ”Are you a safe driver,” in Proc. Int. IEEE Conf. on Computational Science and Engineering, Vancouver, BC, Canada, Aug.29-31, 2009, pp.502-507.

    [10] Majid, D., Accelerometer and Gyroscopes Sensors: Operation, Sensing, and Applications, Application note 5830 of Maxim integrated, 2014, in http://www.maximintegrated.com/en/app-notes/index.mvp/id/5830
    [11] Mamdani E.H., "Application of fuzzy algorithms for control of simple dynamic plant, " Proc. of The IEE, vol.121, pp.1585-1588, 1974.
    [12] Mathie, M. J., N. H. Lovell, A. C. F. Coster, and B. G. Celler, "Determining activity using a triaxial accelerometer," in Proc. of The Second Joint 24th Annual Conf. and The Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES, Houston, Texas, Oct.23-26, 2002. vol.3, pp.2481-2482.
    [13] Meehan, P. and K. Moloney, Basic Principles of Operation and Applications of the Accelerometer, Report of Limerick Institute of Technology, 2007.
    [14] Mohamed, F., B. Gozick, R.Dantu, M. Bhukhiya, and M. C. Gonzalez, "Safe driving using mobile phones, " IEEE Trans. Intelligent Transportation Systems, vol.13, no.3, pp.1462-1468, 2012.
    [15] National Association of Insurance Commissioners, Usage-Based Insurance and Telematics, Report of National Association of Insurance Commissioners, 2015, in http://www.naic.org/cipr_topics/topic_usage_based_insurance.htm
    [16] Smith, S. W., The Scientist and Engineer's Guide to Digital Signal Processing, 2nd, California Technical Publishing, San Diego, 1999.
    [17] Sparkfun, in https://www.sparkfun.com/
    [18] Tunstall, in http://www.tunstallamerica.com/index.htm
    [19] U.S. Department of Transportation National Highway Traffic Safety Administration, The 100-car Naturalistic Driving Study-Phase II Results of The 100-car Field Experiment, Technical Report DOT HS 810 593, 2006.

    [20] Van Ly, M., S. Martin, and M. M. Trivedi, "Driver classification and driving style recognition using inertial sensors," in Proc. IEEE Intelligent Vehicles Symp., Gold Coast, QueenSland, Australia, June 23-26, 2013, pp.1040-1045.
    [21] World Health Organization, Global Status Report on Road Safety 2013, in http://www.who.int/violence_injury_prevention/road_safety_status/ 2013/en/, 2013.
    [22] Yazdi, N., F. Ayazi, and K. Najafi, "Micromachined inertial sensors," Proc. of The IEEE, vol.86, pp.1640-1659, 1998.
    [23] 王文俊, 認識Fuzzy, 全華圖書股份有限公司, 台北, 2012.
    [24] 王進德, 類神經網路與模糊控制理論--入門與應用, 全華圖書股份有限公司, 台北, 2008.
    [25] 交通部運輸研究所, 都會區安全駕駛行為與節能策略之研究, 2011
    [26] 金佑軒, "MEMS 元件於車用領域的應用與發展狀況," 半導體智庫, IEK產業服務-產業情報網, 2009.
    [27] 哈維‧溫伯格, "加速度計搭配陀螺儀MEMS應用如虎添翼," 新通訊元件雜誌, vol.104, Oct. 2009. in http://www.2cm.com.tw/zoomin_content.asp?sn=0910050011
    [28] 國家儀器股份有限公司, 加速規原理, 應用報告, http://www.ni.com/white-paper/12/zht/,2012
    [29] 雷虎科技, in http://www.skyhobby.com.tw/
    [30] 趙娟, "全面掃描MEMS動作感測器," EET電子工程專輯, 2014, in http://www.eettaiwan.com/ART_8800696949_480502_TA_80e36943.htm
    [31] 維基百科, in http://zh.wikipedia.org/wiki/賽格威

    QR CODE
    :::