跳到主要內容

簡易檢索 / 詳目顯示

研究生: 趙訢
Hsin Chao
論文名稱: Evasion and Pursuit Games via Adaptive Submodularity
指導教授: 曾國師
Kuo-Shih Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 33
中文關鍵詞: 次模性追趕問題多機器人合作,機率搜尋
外文關鍵詞: Submodularity, Pursuit-evasion games, Multi-robot cooperation, Probability search
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文專注於多機器人追逐單一目標的追趕問題。在已知的地
    圖上, 目標為最大化目標物的偵測機率。此研究提出以聚類演算法與
    貪婪演算法來解決這個問題, 在目標函數為次模函數的情況下, 貪
    婪演算法帶有理論保證值。模擬證實了提出的演算法比起另一個演算
    法更好。


    This research focuses on pursuit-evasion(PE) games with multi-pursuer and an evader. Given the map, the objective function is to maximize the probability of the evader detection. The proposed algorithms compute search path of pursuers via cluster algorithm and greedy algorithms. Since the objective function is submodular, the algorithms have theoretical guarantees. The simulations demonstrate that the proposed method outperforms benchmark approaches.

    摘要.................................................................................................... i Abstract.............................................................................................. ii Contents ............................................................................................. iii Figures ................................................................................................ iv Tables ................................................................................................. vi 1 Introduction........................................................................ 1 2 Related work ...................................................................... 3 2.1 adaptive submodular . . . . . . . . . . . . . . . . . . 3 2.2 pursuit-evasion game . . . . . . . . . . . . . . . . . . 4 2.3 multi-robot cooperation . . . . . . . . . . . . . . . . 5 2.4 clustering . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Background knowledge ....................................................... 7 3.1 adaptive submodularity . . . . . . . . . . . . . . . . 7 3.2 clustering . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Problem formulation........................................................... 13 4.1 robotic search . . . . . . . . . . . . . . . . . . . . . 13 5 Proposed algorithm ............................................................ 14 6 Experiments........................................................................ 15 6.1 Experimental setup . . . . . . . . . . . . . . . . . . 15 6.2 EX1: Search . . . . . . . . . . . . . . . . . . . . . . 15 6.2.1 simulations . . . . . . . . . . . . . . . . . . . . . . . 15 7 Conclusions and future work .............................................. 18 References........................................................................................... 19

    [1] Timothy H Chung, Georey A Hollinger, and Volkan Isler. Search
    and pursuit-evasion in mobile robotics. Autonomous robots,
    31(4):299316, 2011.
    [2] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher.
    An analysis of approximations for maximizing submodular set
    functions-i. Mathematical programming, 14(1):265294, 1978.
    [3] Uriel Feige. A threshold of ln n for approximating set cover. Journal
    of the ACM (JACM), 45(4):634652, 1998.
    [4] Andreas Krause, Carlos Guestrin, Anupam Gupta, and Jon Kleinberg.
    Near-optimal sensor placements: Maximizing information
    while minimizing communication cost. In Proceedings of the 5th
    international conference on Information processing in sensor net-
    works, pages 210, 2006.
    [5] Amarjeet Singh. Nonmyopic adaptive informative path planning for
    multiple robots. 2009.
    [6] Beatriz A. Asfora, Jacopo Ban, and Mark Campbell. Mixedinteger
    linear programming models for multi-robot non-adversarial
    search. IEEE Robotics and Automation Letters, 5(4):68056812,
    2020.
    [7] Haifeng Zhang and Yevgeniy Vorobeychik. Submodular optimization
    with routing constraints. In Proceedings of the AAAI confer-
    ence on articial intelligence, volume 30, 2016.
    [8] Samir Khuller, Anna Moss, and Joseph Se Naor. The budgeted
    maximum coverage problem. Information processing letters,
    70(1):3945, 1999.
    [9] Maxim Sviridenko. A note on maximizing a submodular set function
    subject to a knapsack constraint. Operations Research Letters,
    32(1):4143, 2004.
    [10] Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey.
    An analysis of approximations for maximizing submodular set functions
    ii. In Polyhedral combinatorics, pages 7387. Springer, 1978.
    [11] Andreas Krause and Carlos Guestrin. Near-optimal observation
    selection using submodular functions. In AAAI, volume 7, pages
    16501654, 2007.
    [12] Bing-Xian Lu and Kuo-Shih Tseng. 3d map exploration via learning
    submodular functions in the fourier domain. In 2020 International
    Conference on Unmanned Aircraft Systems (ICUAS), pages 1199
    1205. IEEE, 2020.
    [13] Robbert Fokkink, Thomas Lidbetter, and László A Végh. On submodular
    search and machine scheduling. Mathematics of Operations
    Research, 44(4):14311449, 2019.
    [14] Amarjeet Singh, Andreas Krause, Carlos Guestrin, and William J
    Kaiser. Ecient informative sensing using multiple robots. Journal
    of Articial Intelligence Research, 34:707755, 2009.
    [15] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory
    and applications in active learning and stochastic optimization.
    Journal of Articial Intelligence Research, 42:427486, 2011.
    [16] Adish Singla and Andreas Krause. Incentives for privacy tradeo
    in community sensing. In First AAAI Conference on Human Com-
    putation and Crowdsourcing, 2013.
    [17] Nathaniel Grammel, Lisa Hellerstein, Devorah Kletenik, and
    Patrick Lin. Scenario submodular cover. In International Workshop
    on Approximation and Online Algorithms, pages 116128. Springer,
    2016.
    [18] Daniel Golovin and Andreas Krause. Adaptive submodular
    optimization under matroid constraints. arXiv preprint
    arXiv:1101.4450, 2011.
    [19] Shaojie Tang. Beyond pointwise submodularity: Non-monotone
    adaptive submodular maximization in linear time. Theoretical Com-
    puter Science, 850:249261, 2021.
    [20] Andrew Guillory and Je Bilmes. Interactive submodular set cover.
    arXiv preprint arXiv:1002.3345, 2010.
    [21] Shaojie Tang. Robust adaptive submodular maximization. IN-
    FORMS Journal on Computing, 2022.
    [22] Torrence D Parsons. Pursuit-evasion in a graph. In Theory and
    applications of graphs, pages 426441. Springer, 1978.
    [23] Leonidas J Guibas, Jean-Claude Latombe, Steven M LaValle, David
    Lin, and Rajeev Motwani. Visibility-based pursuit-evasion in a
    polygonal environment. InWorkshop on algorithms and data struc-
    tures, pages 1730. Springer, 1997.
    [24] Steven M LaValle, David Lin, Leonidas J Guibas, J-C Latombe, and
    Rajeev Motwani. Finding an unpredictable target in a workspace
    with obstacles. In Proceedings of International Conference on
    Robotics and Automation, volume 1, pages 737742. IEEE, 1997.
    [25] Nicholas Roy, Georey Gordon, and Sebastian Thrun. Finding approximate
    pomdp solutions through belief compression. Journal of
    articial intelligence research, 23:140, 2005.
    [26] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Ecient
    point-based pomdp planning by approximating optimally reachable
    belief spaces. In Robotics: Science and systems, volume 2008. Citeseer,
    2008.
    [27] Joao P Hespanha, Maria Prandini, et al. Optimal pursuit under
    partial information. In In Proceedings of the 10th Mediterranean
    Conference on Control and Automation, 2002.
    [28] Joao P Hespanha, Maria Prandini, and Shankar Sastry. Probabilistic
    pursuit-evasion games: A one-step nash approach. In Proceed-
    ings of the 39th IEEE Conference on Decision and Control (Cat.
    No. 00CH37187), volume 3, pages 22722277. IEEE, 2000.
    [29] Lawrence D Stone. Theory of optimal search. Elsevier, 1976.
    [30] Frederic Bourgault, Tomonari Furukawa, and Hugh F Durrant-
    Whyte. Coordinated decentralized search for a lost target in a
    bayesian world. In Proceedings 2003 IEEE/RSJ International Con-
    ference on Intelligent Robots and Systems (IROS 2003)(Cat. No.
    03CH37453), volume 1, pages 4853. IEEE, 2003.
    [31] Rudolph Emil Kalman. A new approach to linear ltering and
    prediction problems. 1960.
    [32] Jun S Liu and Rong Chen. Sequential monte carlo methods for
    dynamic systems. Journal of the American statistical association,
    93(443):10321044, 1998.
    [33] Jorge Pena Queralta, Jussi Taipalmaa, Bilge Can Pullinen, Victor
    Kathan Sarker, Tuan Nguyen Gia, Hannu Tenhunen, Moncef
    Gabbouj, Jenni Raitoharju, and Tomi Westerlund. Collaborative
    multi-robot search and rescue: Planning, coordination, perception,
    and active vision. Ieee Access, 8:191617191643, 2020.
    [34] Wei Dai, Huimin Lu, Junhao Xiao, and Zhiqiang Zheng. Task
    allocation without communication based on incomplete information
    game theory for multi-robot systems. Journal of Intelligent
    & Robotic Systems, 94(3):841856, 2019.
    [35] Junyan Hu, Hanlin Niu, Joaquin Carrasco, Barry Lennox, and Farshad
    Arvin. Voronoi-based multi-robot autonomous exploration
    in unknown environments via deep reinforcement learning. IEEE
    Transactions on Vehicular Technology, 69(12):1441314423, 2020.
    [36] Siobhán Grayson. Search & rescue using multi-robot systems.
    School of Computer Science and Informatics, University College
    Dublin, pages 231432, 2014.
    [37] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein.
    The complexity of decentralized control of markov decision
    processes. Mathematics of operations research, 27(4):819840, 2002.
    [38] Jeongeun Kim and Hyoung Il Son. A voronoi diagram-based
    workspace partition for weak cooperation of multi-robot system in
    orchard. IEEE Access, 8:2067620686, 2020.
    [39] Prithviraj Dasgupta, José Baca, KR Guruprasad, Angélica Muñoz-
    Meléndez, and Janyl Jumadinova. The comrade system for multirobot
    autonomous landmine detection in postconict regions. Jour-
    nal of Robotics, 2015, 2015.
    [40] Georey Hollinger and Sanjiv Singh. Proofs and experiments in
    scalable, near-optimal search by multiple robots. Proceedings of
    Robotics: Science and Systems IV, Zurich, Switzerland, 1, 2008.
    [41] Nicholas Roy and Caleb Earnest. Dynamic action spaces for information
    gain maximization in search and exploration. In 2006
    American Control Conference. IEEE, 2006.
    [42] Timothy H Chung and Joel W Burdick. Analysis of search decision
    making using probabilistic search strategies. IEEE Transactions on
    Robotics, 28(1):132144, 2011.
    [43] Kuo-Shih Tseng and Bérénice Mettler. Near-optimal probabilistic
    search via submodularity and sparse regression. Autonomous
    Robots, 41(1):205229, 2017.

    QR CODE
    :::