| 研究生: |
呂振嘉 Chen-chia Lu |
|---|---|
| 論文名稱: |
鍍鋅鋼板之腐蝕與電化學行為 Corrosion and electrochemical behavior of coating zinc sheet steel |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 鍍鋅鋼板 、電化學行為 、Tafel極化 、循環極化 |
| 外文關鍵詞: | coating zinc sheet steel, electrochemical behavior, cyclic polarization, Tafel polarization |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討熱浸鍍鋅鋼板(SGCC)、電鍍鋅鋼板(SECC)、55%鋁鋅鋼板(SGLC)在不同pH值之3% NaCl溶液中的電化學行為,利用浸泡腐蝕和開路電位量測、Tafel極化和循環極化來評估鍍鋅鋼板的腐蝕與電化學現象。
比較開路電位與重量損失,SGLC在大氣中表面會生成氧化鋁層且具有保護作用,使得在重量損失量較少且開路電位量測偏向貴重,但在pH=11溶液下,此氧化層容易被破壞而導致腐蝕訊速提升。SGCC與SECC在酸性下表面生成之氧化層為不穩定狀態,容易分解,使得重量損失量隨著pH值降低而增加、開路電位隨著pH值降低而區傾向活性,但在鹼性下時表面會會逐漸生成具有保護的氫氧化鋅層而保護鍍層。
從Tafel極化結果中,在不同pH值之3% NaCl溶液中,除了在pH=11以外,其抗腐蝕能力由大而小依序為: SECC>SGLC>SGCC;然而在pH=11時,SGLC腐蝕速率忽然提高,所以在此環境下其抗腐蝕能力由大而小依序為:SECC>SGCC>SGLC。
在循環極化曲線中,SGLC只有在pH=11下才有鈍態特徵的出現且以負磁滯曲線呈現,而SGCC皆有明顯的鈍態特徵但保護能能力不佳,使的鈍態區無法完整呈現並造成局部腐蝕,SECC有完整的鈍態膜,但容易受到不同的pH值的影響而造成的孔蝕產生且嚴重的破壞到基材上。
Hot-dip zinc、electroplating zinc and 55%Al-Zn coating were investigated for comparison of their corrosion resistance, electrochemical behavior in 3% NaCl of varying with pH value solution. The assessment corrosion and electrochemical phenomenon of coating zinc sheet steel were employed with immersed corrosion, opening circuit potential, Tafel polarization, cyclic polarization.
Compared with the OCP and weight loss, SGLC surface is covered by aluminum oxide layer which protects the function. The result is that its weight lost less and OCP towards to the noble potential. But in pH=11, this oxide layer is easier destroyed to cause the corrosion rate rise. However, the surface of SGCC and SECC is formed the oxide layer with unstable in acidic environment, and it is easy to decompose, to cause weight loss increase with the pH decreases and the OCP decrease with the pH decreases. But in the alkalinity environment is covered by the oxide layer which transformed from the degrees of Zinc hydroxide to protect coating.
From Tafel polarization, 3% NaCl of varying with pH value solution except pH=11, its corrosion resistant ability decreases for SECC>SGLC>SGCC. In pH=11, SGLC corrosion rate are enhanced in the short time. Therefore, the corrosion resistance which is under this environment decreases in order to SECC>SGCC>SGLC.
In cyclic polarization, SGLC only has the passive state characteristic appearance also presents by the negative hysteresis curve in pH=11. SGCC has obviously passive state characteristic, but its protected ability is not good enough. The result of the passive state area is unable to do the completely display, and to create the localized corrosion. SECC has entirely passive membrane, but it is easy to different pH value accessibly. Above of all will cause pitting formation which will also make the serious destruction to the substrate on.
1.X.G. Zhang, “Corrosion and Electrochemisry of Zinc”,
Plenum Press, New York, 1996.
2.“Corrosion”, ASM Handbook, Vol.13, 9th. ASM
International, 1992.
3.P.R. Sere, M. Zapponi , C.I. Elsner , A.R. Di Sarli ,
“Comparative Corrosion Behaviour Of 55 Aluminium-Zinc
Alloy And Zinc Hot-Dip Coating Deposited On Low Carbon
Steel Substrates” , Corrosion Science, Vol.40, No.10,
pp.1711-1723 , 1998.
4.Hot-dip galvanizing: process and product, Brazilian
Institute of Lead And Zinc Information-ICZ, Report no.
10 ICZ-Z 4. 10/4. 11, Sao Paulo, Brazil,October 1972.
5.鍍鋅鋼品使用技術手冊, 燁輝企業股份有限公司技術部, 2001年
6.鍍鋅鋼品使用技術手冊, 燁輝企業股份有限公司, No.4, 1991,
pp.1-3, pp.8-11, pp.31-35
7.Kubaschewski O. Iron-binary phase diagrams, 1st ed. New
York: Springer -Verlag, 1982.
8.Lin CS, Meshi M. Metall Mater Trans B 1994; 25B: 721.
9.S. Feliu Jr., V. Barranco,“XPS study of the surface
chemistry of conventional hot-dip galvanized pure Zn,
galvanneal and Zn-Al alloy coatings on steel”, Acta
Materialia, Vol.51, pp.5413-5424, 2003.
10.P.H. Rieger, Electrochemistry, Prentice-Hall
International, New York, 1987.
11.林育立,“鍍鋅鋼板顯微結構及機械性質之研究”, 國科會專題
研究計畫研究成果報告 , 中華工學院, 1995年
12.J.D. Culcasi, P.R. Sere, C.I. Elsner, A.R. Di Sarli,
“Control of the growth of zinc-iron phase in the hot-
dip galvanizing process”, Surface and Coatings
Technology, Vol. 122 , pp.21-23 , 1999.
13.S.M.A. Shibli, R. Manu, “Improvement of hot-dip
coating by enriching the inner layers with iron
oxide”, Applied Surface Science, Vol.252, pp.3058-
3064, 2006.
14.楊聰仁,“電鍍鋅與熱浸鍍鋅比較”,防蝕工程第二卷, 第四期,
pp.53-61, 1989年
15.魏豐義, “熱浸鍍鋅防蝕原理與壽命”, 防蝕工程第九卷, 第一
期, pp.53-72, 1995年
16.J. Foct, J. Aryani-Boufette , A. Iost et al.,
Proceedings of the Galvatech 92 Conference, Amsterdam
CRM ed 1992.
17.G. Reumont, J.B. Vogt, A. Iost, J. Foct, “The effects
of an Fe-Zn Intermetallic-containing coating on the
stress corrosion cracking behavior of a hot-dip
galvanized steel”, Surface and Coatings Technology,
Vol. 139 , pp.265-271 , 2001.
18.B.M. Perfetti, “A comparion of pretreatments for
prepainted galvanized sheet”, Met. Finishing Vol. 81,
Issue5, pp.57-60, 1983.
19.“Surface Cleaning, Finishing, and coating”, Metals
Handbook, Vol. 5, 9th. American Society for metals,
1983.
20.張世穎,陳富謀,莊東漢,“不同鋅含量鋁鋅合金腐蝕行為研
究”, 防蝕工程第十八卷, 第二期, pp.169-176, 2004年
21.E. Palma, J.M. Puente, M. Morcillo, “The Atmospheric
Corrosion Mechanism Of 55%Al-Zn Coating On Steel”,
Corrosion Science, Vol. 40 , No.1, pp.61-68 , 1998.
22.A. Ramus Moreira, Z. Panossian, P.L. Camargo, M.
Ferreira Moreira, I.C. da Silva, J.E. Ribeiro de
Carvalho, “Zn/55Al coating microstructure and
corrosion mechanism”, Corrosion Science, Vol.48,
pp.564-576, 2006.
23.I. Odnevall Wallinder, W. He, P-E. Augustsson, C.
Leygraf, “Characterization of black rust staining of
unpassivated 55% Al-Zn alloy coatings. Effect of
temperature, pH and wet storage”, Corrosion Science,
Vol. 41 , pp.2229-2249 , 1999.
24.R.S. Alwitt, J.W. Diggle, A.K. Vijh(Eds.), “Oxides and
Oxide Films”, Vol.4, 1976.
25.鮮祺振,腐蝕理論與實驗,徐氏基金會出版社,1990年
26.Denny A. Jones, “Principles and prevention of
corrosion”, Second Edition , Simon & Schuster / A
Viacom Company, 1996.
27.葉明勳, “防蝕工程”, 中華大學機械系暨航空太空工程研究所
上課講義, 2005年
28.柯賢文, 腐蝕及其防制, 全華科技圖書公司, 1998
29.W.S. Tait, “An introduction to electrochemical
corrosion testing for practicing engineers and
scientists”, Chapter 6, Racine, Wisconsin, 1994.