跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡琬錡
Wan-Chi Chien
論文名稱: 利用微米/奈米尺度類沸石咪唑骨架材料(ZIF-90)包覆大腸桿菌之相關研究
指導教授: 謝發坤
Fa-Kuen Shieh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 69
中文關鍵詞: 金屬有機骨架材料大腸桿菌生物複合材料類沸石咪唑骨架材料-90類沸石咪唑骨架材料-8
外文關鍵詞: Metal-organic Framework, Escherichia coli, Biocomposites, ZIF-90, ZIF-8
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬有機骨架材料 (MOFs) 因具規則排列的孔洞,而成為目前最新穎的材料之一,主要特點包括高的熱及化學穩定性、尺寸大小可調控性和孔洞之選擇性。已有報導將金屬有機骨架材料塗層於酵母菌細胞表面,藉此抵禦生物裂解酶的攻擊,並使小分子營養乳糖從孔洞擴散進去而提供細胞養分,然而其表面塗層有缺陷,亦可能使抗生素氨苄青黴素等小分子擴散進去而降解細胞。本研究先合成奈米級類沸石咪唑骨架材料-8 (ZIF-8) 塗層於大腸桿菌表面,並證實抗生素確實可能經由缺陷擴散進去細胞,而使細胞裂解死亡。並進一步利用本實驗室於2015年發表之合成方法,利用微米級類沸石咪唑骨架材料-90 (ZIF-90) 封裝大腸桿菌,使其具備更完整的保護以抵禦抗生素,將材料崩解過後,大腸桿菌仍然可以回到原本的生長狀態。並分別量測大腸桿菌和兩種材料ZIF-8/-90之界達電位,藉此證明界達電位之差值確實會影響形成材料之大小,提供未來合成生物複合材料之參考。


    Metal Organic Frameworks (MOFs), an emerging class of porous materials, have become promising materials because of their high thermal and chemical stability, tunable of their pore shape, and size selectivity. There is a report about MOF materials coating on yeast cells to prevent larger cytotoxic molecules, such as lytic enzymes while permit the transport of nutrients necessary for cell viability. However, the defects on MOF-coating may have a chance to enable antibiotic Ampicillin diffuse through and kill the cell. In this study, we demonstrate how to synthesize ZIF-8 coated E. coli and vertify antibiotics could indeed diffuse through and cause E. coli lysis. Herein, we based on our previous report of de novo approach to encapsulate Escherichia coli (E. coli) into ZIF-90 single crystals, E. coli@ZIF-90, as a completely protective structure against harsh conditions. After decomposition of ZIF-90 materials, E. coli immediately regained full functionality. Moreover, we measured the zeta potential of E. coli and ZIF-8/-90 to prove that surface electrostatic potential indeed have a influence on the size of biocomposites.

    中文摘要 I Abstract II 圖目錄 VIII 表目錄 X 第一章 緒論 1 1-1金屬有機骨架材料 1 1-2類沸石咪唑骨架材料 4 1-3類沸石咪唑骨架材料-8/-90 5 1-4微生物 7 1-5大腸桿菌 ( Escherichia coli ) 8 1-6質體 ( Plasmid ) 11 1-7研究動機與目的 13 第二章 實驗部分 14 2-1實驗藥品與材料 14 2-2實驗儀器與原理 16 2-2-1 粉末X光繞射儀 (Powder X-Ray Diffraction, PXRD) 17 2-2-2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 18 2-2-3 熱重分析儀 (Thermogravimetric Analyzer, TGA) 19 2-2-4 螢光顯微鏡 (Fluorescence Microscopy) 20 2-2-5 共軛焦雷射掃描顯微鏡 (Confocal Microscopy) 21 2-2-6 聚合酶鏈鎖反應 (Polymerase Chain Reaction, PCR) 22 2-2-7 攜帶型分光光度計 (Ultrospec 10 Cell Density Meter) 24 2-2-8 瓊脂糖凝膠電泳 (Agarose Gel Electrophoresis) 24 2-2-9 界面電位分析儀 (Zeta Potential Analyzer) 25 2-3實驗步驟 26 2-3-1 培養大腸桿菌之相關實驗步驟 26 2-3-2 微米級類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli@ZIF-90) 之實驗相關步驟 30 2-3-3 奈米級類沸石咪唑骨架材料-8塗層於大腸桿菌之相關實驗步驟 32 2-3-4 奈米級類沸石咪唑骨架材料-90塗層於大腸桿菌之實驗步驟 33 第三章 結果與討論 34 3-1 大腸桿菌之相關鑑定 34 3-1-1 於類沸石咪唑骨架材料-8/-90之活性探討 34 3-1-2 於鹼性環境之活性探討 35 3-1-3 於2-甲基咪唑 ( 2-MI )環境之活性探討 36 3-1-4 於不同培養液之生長狀態探討 37 3-1-5 於不同培養液中抗生素殺菌效果探討 38 3-1-6 於鹽酸與乙二胺四乙酸環境之活性探討 39 3-2微米級類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli@ZIF-90) 之相關鑑定 41 3-2-1 粉末X光繞射儀鑑定結果 41 3-2-2 掃描式電子顯微鏡鑑定結果 42 3-2-3 熱重分析儀鑑定結果 43 3-2-4 螢光顯微鏡與共軛焦顯微鏡鑑定結果 44 3-2-5 E. coli@ZIF-90於抗生素環境之活性探討 46 3-3奈米級多晶類沸石咪唑骨架材料塗層於大腸桿菌表面之相關鑑定 47 3-3-1 粉末X光繞射儀鑑定結果 47 3-3-2 掃描式電子顯微鏡鑑定結果 48 3-3-3 於抗生素環境之活性探討 49 3-3-4 ZIF-8/-90與大腸桿菌之界達電位探討 50 第四章 結論 51 第五章 參考文獻 52

    1. Batten SR, et al. Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm 14, 3001-3004 (2012).

    2. Moghadam PZ, et al. Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chemistry of Materials 29, 2618-2625 (2017).

    3. Farha OK, et al. Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society 134, 15016-15021 (2012).

    4. Henke S. Metal-Organic Frameworks with Additional Flexible Substituents –
    Modulating Responsiveness, Gas Sorption Selectivity & Network Topologies. ResearchGate, (2011).

    5. Férey G. Hybrid porous solids: past, present, future. Chemical Society Reviews 37, 191-214 (2008).

    6. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The Chemistry and Applications of Metal-Organic Frameworks. Science 341, 1230444 (2013).

    7. Stock N, Biswas S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 112, 933-969 (2012).

    8. Klinowski J, Almeida Paz FA, Silva P, Rocha J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 40, 321-330 (2011).

    9. Khan NA, Jhung SH. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coordination Chemistry Reviews 285, 11-23 (2015).

    10. Al-Kutubi H, Gascon J, Sudhölter EJR, Rassaei L. Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem 2, 462-474 (2015).

    11. Do J-L, Friščić T. Mechanochemistry: A Force of Synthesis. ACS Central Science 3, 13-19 (2017).

    12. Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B 70, 3-10 (2014).

    13. Seetharaj R, Vandana PV, Arya P, Mathew S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry 12, 295-315 (2019).

    14. Bennett TD, Cheetham AK, Fuchs AH, Coudert F-X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nature Chemistry 9, 11 (2016).

    15. Sholl DS, Lively RP. Defects in Metal–Organic Frameworks: Challenge or Opportunity? The Journal of Physical Chemistry Letters 6, 3437-3444 (2015).

    16. Hajek J, Bueken B, Waroquier M, De Vos D, Van Speybroeck V. The Remarkable Amphoteric Nature of Defective UiO-66 in Catalytic Reactions. ChemCatChem 9, 2203-2210 (2017).

    17. Banerjee R, et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO<sub>2</sub> Capture. Science 319, 939 (2008).

    18. Suh MP, Park HJ, Prasad TK, Lim D-W. Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 112, 782-835 (2012).

    19. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 112, 1105-1125 (2012).

    20. Yoon M, Srirambalaji R, Kim K. Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 112, 1196-1231 (2012).

    21. Li S-L, Xu Q. Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 6, 1656-1683 (2013).

    22. Horcajada P, et al. Metal–Organic Frameworks in Biomedicine. Chemical Reviews 112, 1232-1268 (2012).

    23. Yen C-I, et al. Cytotoxicity of Postmodified Zeolitic Imidazolate Framework-90 (ZIF-90) Nanocrystals: Correlation between Functionality and Toxicity. Chemistry – A European Journal 22, 2925-2929 (2016).

    24. Bétard A, Fischer RA. Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 112, 1055-1083 (2012).

    25. Miller SE, Teplensky MH, Moghadam PZ, Fairen-Jimenez D. Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface focus 6, 20160027-20160027 (2016).

    26. McDonald TM, et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303 (2015).

    27. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 43, 58-67 (2010).

    28. Huang X-C, Lin Y-Y, Zhang J-P, Chen X-M. Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 45, 1557-1559 (2006).

    29. Park KS, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 103, 10186 (2006).

    30. Pérez-Pellitero J, et al. Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. Chemistry – A European Journal 16, 1560-1571 (2010).

    31. Pan Y, Lai Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications 47, 10275-10277 (2011).

    32. Wu H, Zhou W, Yildirim T. Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society 129, 5314-5315 (2007).

    33. Kuo C-H, et al. Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society 134, 14345-14348 (2012).

    34. Chen E-X, Yang H, Zhang J. Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. Inorganic Chemistry 53, 5411-5413 (2014).

    35. Zhuang J, Kuo C-H, Chou L-Y, Liu D-Y, Weerapana E, Tsung C-K. Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 8, 2812-2819 (2014).

    36. Morris W, Doonan CJ, Furukawa H, Banerjee R, Yaghi OM. Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 130, 12626-12627 (2008).

    37. Bae T-H, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S. A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal–Organic Framework Crystals. Angewandte Chemie International Edition 49, 9863-9866 (2010).

    38. Huang A, Dou W, Caro J. Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization. Journal of the American Chemical Society 132, 15562-15564 (2010).

    39. Zhang F-M, et al. Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs. ACS Applied Materials & Interfaces 9, 27332-27337 (2017).

    40. Jones CG, et al. Versatile Synthesis and Fluorescent Labeling of ZIF-90 Nanoparticles for Biomedical Applications. ACS Applied Materials & Interfaces 8, 7623-7630 (2016).

    41. Gest H. The Remarkable Vision of Robert Hooke (1635-1703): First Observer of the Microbial World. Perspectives in Biology and Medicine 48, 266-272 (2005).

    42. Porter JR. Antony van Leeuwenhoek: tercentenary of his discovery of bacteria. Bacteriol Rev 40, 260-269 (1976).

    43. Cruickshank R. Sir Alexander Fleming, F.R.S. Nature 175, 663-663 (1955).

    44. Cummings B. Pearson Education. (2004).

    45. https://www.lifescience-market.com/plasmid-c-94/pet28aegfp-p-95194.html.

    46. Yang SH, Lee K-B, Kong B, Kim J-H, Kim H-S, Choi IS. Biomimetic Encapsulation of Individual Cells with Silica. Angewandte Chemie International Edition 48, 9160-9163 (2009).

    47. Park JH, et al. A Cytoprotective and Degradable Metal–Polyphenol Nanoshell for Single-Cell Encapsulation. Angewandte Chemie International Edition 53, 12420-12425 (2014).

    48. Ko EH, et al. Bioinspired, cytocompatible mineralization of silica-titania composites: thermoprotective nanoshell formation for individual chlorella cells. Angew Chem Int Ed Engl 52, 12279-12282 (2013).

    49. Liang K, Richardson JJ, Cui J, Caruso F, Doonan CJ, Falcaro P. Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Advanced Materials 28, 7910-7914 (2016).

    50. Riccò R, et al. Metal–Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano 12, 13-23 (2018).

    51. https://www.sciencetopia.net/physics/braggs-law.

    52. https://images.app.goo.gl/2kND8ERzWd1BSCot9.

    53. https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/fundamentals-of-fluorescence-microscopy/epifluorescence-microscope-basics.html.

    54. http://abrc.sinica.edu.tw/icm/app_out/main/theorem.php.

    55. https://www.bosterbio.com/protocol-and-troubleshooting/molecular-biology-principle-pcr.

    56. https://upload.wikimedia.org/wikipedia/commons/0/05/Diagram_of_zeta_potential_and_slipping_planeV2.svg.

    QR CODE
    :::