| 研究生: |
陳威良 Wei-Liang Chen |
|---|---|
| 論文名稱: |
金屬有機骨架材料應用於吸附式除濕性能研究 |
| 指導教授: |
楊建裕
Chien-Yuh Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 吸附式除濕 、金屬有機骨架 、富馬酸鋁 |
| 外文關鍵詞: | adsorption drying, Metal Organic Frameworks, Aluminum Fumarate |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用工研院開發之金屬有機骨架材料富馬酸鋁,測試用於吸附式系統之除濕性能,並比較與FAM Z05、矽膠吸附床之差異,吸附床使用扁平管吸附床,MOF、FAM Z05、矽膠分別塗佈0.64kg、1.43kg以及1.46kg。
實驗分別對吸附床除濕性能與脫附性能進行研究,除濕性能改變通水溫度25、30、35度以及改變風速1、2、3m/s,脫附性能改變通水溫度60、50、40度以及改變風速1、2、3m/s。
實驗結果得知,在60度脫附,通25度水吸附之條件下,MOF吸附床有0.5吸附率表現,FAM Z05為0.24,矽膠為0.157,然MOF塗佈量僅0.64kg,因此除濕水量與FAM Z05相近,風速部分各吸附床性能隨著風速增加而增加。
In this system, a Metal Organic Frameworks material, made by ITRI is applied in adsorption drying system and test its perormance.Compare to silica gel and FAM Z05 adsorption bed, these three materials are tested in experiment. The flap fin tube heat exchanger is used as the adsorption bed, which have MOF 0.64kg, FAM Z05 1.43kg, silica gel 1.46kg coating on it.
In experimental condition, we change water temperature 25, 30, 35oC and air wind speed 1, 2, 3m/s in dehumidification process, and change water temperature 60, 50, 40oC and air wind speed 1, 2, 3m/s in dehumidification process.
The result shows that, MOF adsorption bed has better dehumidification performance with 25 oC water after 60 oC desorption. However, there are only 0.64kg MOF on bed. Therefore, the performance is not far from FAM Z05.As for wind speed of air, the performance increasing with wind speed increasing.
[1]工研院綠能所,「吸附劑除濕轉輪系統」。 2017.
[2]信易電熱公司型錄,https://www.shini.com/tw/index.html.
[3]Mitsubishi Plastic, Inc. https://www.aaasaveenergy.com/products/001/desiccant/index.html
[4]材料世界網,「多孔材料明日之星—金屬有機框架(MOF)材料」,http://www.materialsnet.com.tw/DocView.aspx?id=11552
[5]F. Jeremias, A. Khutia, S. K. Henninger, and C. Janiak, “MIL-100 (Al, Fe) as water adsorbents for heat transformation purposes—a promising application,” Journal of Materials Chemistry, vol. 22, no. 20, pp. 10148-10151, 2012.
[6]工研院綠能所,「ITRI-MOF」
[7]S. Shimooka, K. Oshima, H. Hidaka, T. Takewaki, H. Kakiuchi, A. Kodama, M. Kubota, and H. Matsuda, “The evaluation of direct cooling and heating desiccant device coated with FAM,” Journal of chemical engineering of Japan, pp. 0710050044-0710050044, 2007.
[8]K. Zu, M. Qin, and S. Cui, “Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review,” Renewable Sustainable Energy Reviews, vol. 133, pp. 110246, 2020.
[9]E. Alvarez, N. Guillou, C. Martineau, B. Bueken, B. Van de Voorde, C. Le Guillouzer, P. Fabry, F. Nouar, F. Taulelle, and D. De Vos, “The structure of the aluminum fumarate metal–organic framework A520,” Angewandte Chemie, vol. 127, no. 12, pp. 3735-3739, 2015.
[10]S. K. Henninger, S.-J. Ernst, L. Gordeeva, P. Bendix, D. Fröhlich, A. D. Grekova, L. Bonaccorsi, Y. Aristov, and J. Jaenchen, “New materials for adsorption heat transformation and storage,” Renewable Energy, vol. 110, pp. 59-68, 2017.
[11]H. Kummer, F. Jeremias, A. Warlo, G. Füldner, D. Fröhlich, C. Janiak, R. Gläser, and S. K. Henninger, “A functional full-scale heat exchanger coated with aluminum fumarate metal–organic framework for adsorption heat transformation,” Industrial Engineering Chemistry Research, vol. 56, no. 29, pp. 8393-8398, 2017.
[12]H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi, and E. N. Wang, “Water harvesting from air with metal-organic frameworks powered by natural sunlight,” Science, vol. 356, no. 6336, pp. 430-434, 2017.
[13]華人百科,「轉輪除濕機」,https://www.itsfun.com.tw/%E8%BD%89%E8%BC%AA%E9%99%A4%E6%BF%95%E6%A9%9F/wiki-626686-307846.
[14]E. C. Boelman, B. B. Saha, and T. Kashiwagi, “Experimental investigation of a silica gel-water adsorption refrigeration cycle-the influence of operating conditions on cooling output and COP,” ASHRAE Transactions, vol. 101, no. Pt 2, pp. 358-366, 1995.
[15]L. Zhang, “Design and testing of an automobile waste heat adsorption cooling system,” Applied thermal engineering, vol. 20, no. 1, pp. 103-114, 2000.
[16]Y. Liu, R. Wang, and Z. Xia, “Experimental performance of a silica gel–water adsorption chiller,” Applied Thermal Engineering, vol. 25, no. 2-3, pp. 359-375, 2005.
[17]W.-S. Chang, C.-C. Wang, and C.-C. Shieh, “Experimental study of a solid adsorption cooling system using flat-tube heat exchangers as adsorption bed,” Applied Thermal Engineering, vol. 27, no. 13, pp. 2195-2199, 2007.
[18]M. Kubota, T. Ueda, R. Fujisawa, J. Kobayashi, F. Watanabe, N. Kobayashi, and M. Hasatani, “Cooling output performance of a prototype adsorption heat pump with fin-type silica gel tube module,” Applied Thermal Engineering, vol. 28, no. 2-3, pp. 87-93, 2008.
[19]陳又維,「薄矽膠層吸附床之性能研究」,國立中央大學能源工程研究所碩士論文。2010
[20]林宗漢,「矽膠塗佈厚度對扁平管吸附床性能之影響」,國立中央大學機械工程學系碩士論文。, 2011
[21]陳威任,「使用FAM-Z05之小型吸附式空調」,國立中央大學能源工程研究所碩士論文。2019