跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳威良
Wei-Liang Chen
論文名稱: 金屬有機骨架材料應用於吸附式除濕性能研究
指導教授: 楊建裕
Chien-Yuh Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 143
中文關鍵詞: 吸附式除濕金屬有機骨架富馬酸鋁
外文關鍵詞: adsorption drying, Metal Organic Frameworks, Aluminum Fumarate
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用工研院開發之金屬有機骨架材料富馬酸鋁,測試用於吸附式系統之除濕性能,並比較與FAM Z05、矽膠吸附床之差異,吸附床使用扁平管吸附床,MOF、FAM Z05、矽膠分別塗佈0.64kg、1.43kg以及1.46kg。
    實驗分別對吸附床除濕性能與脫附性能進行研究,除濕性能改變通水溫度25、30、35度以及改變風速1、2、3m/s,脫附性能改變通水溫度60、50、40度以及改變風速1、2、3m/s。
    實驗結果得知,在60度脫附,通25度水吸附之條件下,MOF吸附床有0.5吸附率表現,FAM Z05為0.24,矽膠為0.157,然MOF塗佈量僅0.64kg,因此除濕水量與FAM Z05相近,風速部分各吸附床性能隨著風速增加而增加。


    In this system, a Metal Organic Frameworks material, made by ITRI is applied in adsorption drying system and test its perormance.Compare to silica gel and FAM Z05 adsorption bed, these three materials are tested in experiment. The flap fin tube heat exchanger is used as the adsorption bed, which have MOF 0.64kg, FAM Z05 1.43kg, silica gel 1.46kg coating on it.
    In experimental condition, we change water temperature 25, 30, 35oC and air wind speed 1, 2, 3m/s in dehumidification process, and change water temperature 60, 50, 40oC and air wind speed 1, 2, 3m/s in dehumidification process.
    The result shows that, MOF adsorption bed has better dehumidification performance with 25 oC water after 60 oC desorption. However, there are only 0.64kg MOF on bed. Therefore, the performance is not far from FAM Z05.As for wind speed of air, the performance increasing with wind speed increasing.

    目錄 摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XIII 符號說明 XIV 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 3 第二章 文獻回顧 7 2.1 吸附式除濕 7 2.2 吸附原理 7 2.3 吸附材料之吸附性能 8 2.4 吸附床型式 10 2.5 不同型式之熱交換器吸附床 11 2.6 研究項目 12 第三章 實驗方法 20 3.1 吸附床製作 20 3.1.1 吸附床熱交換器設計 20 3.1.2 吸附材塗佈 20 3.2 實驗系統 21 3.3 實驗量測設備 21 3.3.1 溫度量測 21 3.3.2 濕度量測 22 3.3.3 開放式風洞以及風量量測 22 3.4 實驗步驟 23 3.4.1 吸附床脫附性能量測 23 3.4.2 吸附床除濕性能量測 23 3.5 數據換算 24 3.5.1 絕對濕度 24 3.5.2 水汽之質傳量 24 3.5.3 吸附率與脫附率 24 第四章 結果與討論 35 4.1 實驗結果 35 4.1.1 除濕過程實驗結果 35 4.1.2 脫附過程實驗結果 36 4.2 實驗結果分析 37 4.3 吸附床除濕性能結果分析 38 4.3.1 不同通水溫度下吸附床除濕性能 38 4.3.2 不同空氣風速下吸附床除濕性能 40 4.4 吸附床除濕性能計算結果分析 40 4.4.1 不同通水溫度下吸附床除濕性能 40 4.4.2 不同空氣風速下吸附床除濕性能 41 第五章 結論 66 參考文獻 67 附錄 70 A.除濕過程溫度、濕度圖 70 B.脫附過程溫度、濕度圖 98

    [1]工研院綠能所,「吸附劑除濕轉輪系統」。 2017.
    [2]信易電熱公司型錄,https://www.shini.com/tw/index.html.
    [3]Mitsubishi Plastic, Inc. https://www.aaasaveenergy.com/products/001/desiccant/index.html
    [4]材料世界網,「多孔材料明日之星—金屬有機框架(MOF)材料」,http://www.materialsnet.com.tw/DocView.aspx?id=11552
    [5]F. Jeremias, A. Khutia, S. K. Henninger, and C. Janiak, “MIL-100 (Al, Fe) as water adsorbents for heat transformation purposes—a promising application,” Journal of Materials Chemistry, vol. 22, no. 20, pp. 10148-10151, 2012.
    [6]工研院綠能所,「ITRI-MOF」
    [7]S. Shimooka, K. Oshima, H. Hidaka, T. Takewaki, H. Kakiuchi, A. Kodama, M. Kubota, and H. Matsuda, “The evaluation of direct cooling and heating desiccant device coated with FAM,” Journal of chemical engineering of Japan, pp. 0710050044-0710050044, 2007.
    [8]K. Zu, M. Qin, and S. Cui, “Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review,” Renewable Sustainable Energy Reviews, vol. 133, pp. 110246, 2020.
    [9]E. Alvarez, N. Guillou, C. Martineau, B. Bueken, B. Van de Voorde, C. Le Guillouzer, P. Fabry, F. Nouar, F. Taulelle, and D. De Vos, “The structure of the aluminum fumarate metal–organic framework A520,” Angewandte Chemie, vol. 127, no. 12, pp. 3735-3739, 2015.
    [10]S. K. Henninger, S.-J. Ernst, L. Gordeeva, P. Bendix, D. Fröhlich, A. D. Grekova, L. Bonaccorsi, Y. Aristov, and J. Jaenchen, “New materials for adsorption heat transformation and storage,” Renewable Energy, vol. 110, pp. 59-68, 2017.
    [11]H. Kummer, F. Jeremias, A. Warlo, G. Füldner, D. Fröhlich, C. Janiak, R. Gläser, and S. K. Henninger, “A functional full-scale heat exchanger coated with aluminum fumarate metal–organic framework for adsorption heat transformation,” Industrial Engineering Chemistry Research, vol. 56, no. 29, pp. 8393-8398, 2017.
    [12]H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi, and E. N. Wang, “Water harvesting from air with metal-organic frameworks powered by natural sunlight,” Science, vol. 356, no. 6336, pp. 430-434, 2017.
    [13]華人百科,「轉輪除濕機」,https://www.itsfun.com.tw/%E8%BD%89%E8%BC%AA%E9%99%A4%E6%BF%95%E6%A9%9F/wiki-626686-307846.
    [14]E. C. Boelman, B. B. Saha, and T. Kashiwagi, “Experimental investigation of a silica gel-water adsorption refrigeration cycle-the influence of operating conditions on cooling output and COP,” ASHRAE Transactions, vol. 101, no. Pt 2, pp. 358-366, 1995.
    [15]L. Zhang, “Design and testing of an automobile waste heat adsorption cooling system,” Applied thermal engineering, vol. 20, no. 1, pp. 103-114, 2000.
    [16]Y. Liu, R. Wang, and Z. Xia, “Experimental performance of a silica gel–water adsorption chiller,” Applied Thermal Engineering, vol. 25, no. 2-3, pp. 359-375, 2005.
    [17]W.-S. Chang, C.-C. Wang, and C.-C. Shieh, “Experimental study of a solid adsorption cooling system using flat-tube heat exchangers as adsorption bed,” Applied Thermal Engineering, vol. 27, no. 13, pp. 2195-2199, 2007.
    [18]M. Kubota, T. Ueda, R. Fujisawa, J. Kobayashi, F. Watanabe, N. Kobayashi, and M. Hasatani, “Cooling output performance of a prototype adsorption heat pump with fin-type silica gel tube module,” Applied Thermal Engineering, vol. 28, no. 2-3, pp. 87-93, 2008.
    [19]陳又維,「薄矽膠層吸附床之性能研究」,國立中央大學能源工程研究所碩士論文。2010
    [20]林宗漢,「矽膠塗佈厚度對扁平管吸附床性能之影響」,國立中央大學機械工程學系碩士論文。, 2011
    [21]陳威任,「使用FAM-Z05之小型吸附式空調」,國立中央大學能源工程研究所碩士論文。2019

    QR CODE
    :::