跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張維捷
Wei-Chieh Chang
論文名稱: 以資料挖礦法則預測網頁更新規則之研究
Discovering Web Page Modification Pattern with Data Mining
指導教授: 許秉瑜
Ping-yu Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
畢業學年度: 88
語文別: 中文
論文頁數: 73
中文關鍵詞: 網頁更新資料挖礦樣式網頁挖礦關聯規則
外文關鍵詞: web page update, data mining, pattern discovery, WWW, web mining
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一個搜尋引擎的系統中,將會常常需要對其所蒐集的網頁做更新的動作,通常其更新的間隔為一固定時間,由使用者自訂,但是一旦其間隔的設定不佳,則可能造成抓回來的網頁內容都是與先前相同的(間隔太短),或是網頁的內容已經被更新過多次以上了(間隔太長),這樣一來就可能會有浪費網路成本的情況出現。所以本論文利用資料挖礦中產生序列關聯規則的方法,對網頁找出其更新時間的樣式(updated pattern),並以此更新的樣式來產生網頁的更新預測。依照本研究設計的預測更新機制,可以幫助搜尋引擎的管理者,使其在網頁的管理上可以對減低其對於網路的使用。本研究也提出Incremental 的方法來更新本研究的預測規則,利用此Incremental的演算法可以減少掃瞄資料庫的次數,並適時的產生新的、合理的規則。


    In the E-Commerce era, many agents roam over internet to find best prices, cluster related merchandize information, etc. Agents have to visit targeted web pages periodically to update information. If agents visit pages too frequently then they end up reloading many existing pages. On the other hand, if agents visit web pages too infrequently, collected data may be out of date. To minimize out-of-date errors, agents temp to visit a site as soon as possible. However, to minimize network traffic and database update cost, system administrators temp to reduce the visit as much as possible. To the best of our knowledge, no research has have been directed to find a scientific approach to solve the dilemma.
    In the paper, we propose to visit web pages according to past update patterns. That is, a page should be visited as soon as it is expected to be changed, but should not be visited in any other time. To discover the update patterns, we propose to use sequential association rules of data mining methodology. Association rules can find patterns implicitly associated with data that are the update times of each web page. In the paper, each web page will be associated with a sequence of binary digits denoting whether the page is updated in last agent fetching slot. We designed an algorithm to mine patterns from the sequence of binary digits. The patterns will be composed of large item sequences and related association rules. The rule states under some preconditions, the web page will be changed in next time slot. If a precondition match current situation then an agent will be sent to fetch the page. Besides computing patterns for existing pages, the system will also update its database dynamically to consider the factors of newly inserted pages and deleted pages.

    第一章 緒論1 第一節 研究動機1 第二節 研究目的2 第三節 論文結構4 第二章 文獻探討5 第一節 資料挖礦概述5 第二節 序列結構的關聯規則15 第三節 網頁挖礦(Web Mining)19 第四節 預測31 第三章 演算法34 第一節 資料結構34 第二節 問題描述37 第三節 產生Binary Large Sequence38 第四節 預測的樣式42 第四章 完整的處理流程47 第一節 網頁資料庫的維護47 第二節 網頁資料的更新預測48 第三節 更新預測規則(Incremental updated pattern)49 第四節 研究限制61 第五章 實 驗62 第一節 資料來源62 第二節 實驗結果63 第六章 結論與建議68 第一節 成果與貢獻68 第二節 未來研究方向68 參考文獻70

    [1] A.Z. Broder, S. C. Glassman, M. S. Manasse, and G Zweig. "Syntactic clustering of the web " In Proc. of 6 th International World Wide Web Conference, 1997.
    [2] Alper Caglyan and Colin Harrison, "Agent Sourcebook", Hohn Wiley & Sons., Canada,1997
    [2] Alper Caglyan and Colin Harrison, "Agent Sourcebook", Hohn Wiley & Sons., Canada,1997
    [4] C. M. Brown, B. B. Danzing,D. Hardy, U.Manber, and M. F. Schwartz. "The harvest information discovery and access system." In Proc. 2nd International World Wide Web Conference, 1994.
    [5] C.S. Li, P.S. Yu, and V. Castelli, "HierarchyScan: A Hierarchical Similarity Search Algorithm for Databases of Long Sequences," Proc. 12th Int’l Conf. Data Eng., Feb. 1996.
    [6] D. Konopnicki and O. Shmueli. "W3qs: A query system for the world wide web." In Proc. of the 21 th VLDB Conference, pages 54-65,Zurich,1995.
    [6] D. Konopnicki and O. Shmueli. "W3qs: A query system for the world wide web." In Proc. of the 21 th VLDB Conference, pages 54-65,Zurich,1995.
    [8] Software Inc. Webtrends. http://www.webtrends.com,1995
    [8] Software Inc. Webtrends. http://www.webtrends.com,1995
    [10] J. R. Quinlan, "Induction of Decision Trees", Machine Learning, vol. 1, pp. 81-106, 1986.
    [11] J. S. Park, M.-S. Chen, and P.S. Yu "An Effective Hash-Based Algorithm for Mining Association Rules,” SIGMOD , pp.175-186, 1995.
    [11] J. S. Park, M.-S. Chen, and P.S. Yu "An Effective Hash-Based Algorithm for Mining Association Rules,” SIGMOD , pp.175-186, 1995.
    [13] K. A. Oostendorp, W. F. Punch, and R. W. Wiggins. "A tool for individualizing the web ." In Proc. 2 nd International World Wide Web Conference, 1994.
    [13] K. A. Oostendorp, W. F. Punch, and R. W. Wiggins. "A tool for individualizing the web ." In Proc. 2 nd International World Wide Web Conference, 1994.
    [13] K. A. Oostendorp, W. F. Punch, and R. W. Wiggins. "A tool for individualizing the web ." In Proc. 2 nd International World Wide Web Conference, 1994.
    [16] M.-S. Chen, J.S. Park, and P.S. Yu, "Efficient Data Mining for Path Traversal Patterns", IEEE Transactions on Knowledge and Data Engineering , vol. 10 , no.2, pp. 209-221, 1998.
    [17] M.-S Chen, J. Han,P. S. Yu,"Data Mining : An Overview from Database Perspective", IEEE Transaction on Knowledge and Data Engineering,1887
    [17] M.-S Chen, J. Han,P. S. Yu,"Data Mining : An Overview from Database Perspective", IEEE Transaction on Knowledge and Data Engineering,1887
    [19] net.Genesis net. analysis desktop. http://www.netgen.com,1996.
    [20] Open Market Inc. Open market web reporter http://www.openmarket.com,1996
    [20] Open Market Inc. Open market web reporter http://www.openmarket.com,1996
    [22] P. Merialdo P. Atzeni, G. Mecca. "Semistructured and structured data in the web :Going back and forth." In Proc. of the Workshop on the Management of Semistructured Data ,1997.
    [23] Ping-Yu hsu,"WebLattice : Modeling Web Documents with Lattices", Business Administration Department of National Central University, Taiwan, August 7,1998.
    [24] R. Agrawal, R. Srikant. "Fast Algorithm for Mining Association Rules ",In Proc.20th VLDB conference ,Santiago, Chile, 1994.
    [25] R. Agrawal and R. Srikant, "Mining Sequential Patterns," Proc. of the Int''l Conference on Data Engineering (ICDE), Taipei, Taiwan, March 1995.
    [25] R. Agrawal and R. Srikant, "Mining Sequential Patterns," Proc. of the Int''l Conference on Data Engineering (ICDE), Taipei, Taiwan, March 1995.
    [25] R. Agrawal and R. Srikant, "Mining Sequential Patterns," Proc. of the Int''l Conference on Data Engineering (ICDE), Taipei, Taiwan, March 1995.
    [28] R.Cooley, B. Mobasher, and J. Srivastava "Web Mining : Information and Pattern Discovery on the World Wide Web" IEEE pp.558~567 1997
    [29] R.Cooley, B. Mobasher, and J. Srivastava "Grouping Web Page References inti Transaction for Mining World Wide Web Browsing Patterns" IEEE pp.2~9 1997
    [29] R.Cooley, B. Mobasher, and J. Srivastava "Grouping Web Page References inti Transaction for Mining World Wide Web Browsing Patterns" IEEE pp.2~9 1997
    [29] R.Cooley, B. Mobasher, and J. Srivastava "Grouping Web Page References inti Transaction for Mining World Wide Web Browsing Patterns" IEEE pp.2~9 1997
    [29] R.Cooley, B. Mobasher, and J. Srivastava "Grouping Web Page References inti Transaction for Mining World Wide Web Browsing Patterns" IEEE pp.2~9 1997
    [29] R.Cooley, B. Mobasher, and J. Srivastava "Grouping Web Page References inti Transaction for Mining World Wide Web Browsing Patterns" IEEE pp.2~9 1997
    [29] R.Cooley, B. Mobasher, and J. Srivastava "Grouping Web Page References inti Transaction for Mining World Wide Web Browsing Patterns" IEEE pp.2~9 1997
    [35] W. B. Frakes and R. Baeza-Yates. "Information Retrieval Data Structures and Algorithms." Prentice Hall, Englewood Cliffs,NJ,1992.
    [36] Y. Aumann, Oren Etzioni, R. Feldman, M. Perkowitz, and T. Shmiel, "Predicting event Sequence: Data Mining for Prefetching Web-pages," KDD’98.
    [37] Y. S. Marrek and I.Z. Ben Shaul. "Automatically organizing bookmarks per content." In Proc. of 5 th International World Wide Web Conference, 1996.
    [38]陳仕昇、陳彥良、許秉瑜 ,"以可重複序列挖掘網路瀏覽規則之研究."資管評論,第九期 民國88年。

    QR CODE
    :::