跳到主要內容

簡易檢索 / 詳目顯示

研究生: 施易利
Yih-Lih Shih
論文名稱: 醫用近紅外光光電量測機構對模擬乳房與腫瘤之假體量測分析
NIR Electro-optical Measurement and Analysis for the Heterogeneous Intralipid Phantoms Imitating Breast Tumors
指導教授: 潘敏俊
Min-Chun Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 145
中文關鍵詞: 近紅外光假體
外文關鍵詞: Intralipid phantom, heterogeneous, NIR, DOT
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 擴散式近紅外光斷層掃描系統是新穎的醫學造影技術,此掃描系統的優點是它的安全性高,非侵入式的偵測特性。由於特定波段NIR 光源對於病變組織,因吸收及散射係數差異,而具有效的診斷能力,使其相較其它斷層掃描系統更能有效發現病變組織所在。本論文主要探討在一個高解析度的旋轉機構對人造假體做一個標的物和兩個標物的分析。針對標的物在不同因素下(包括標的物對假體中心偏移量,標的物和假體背景濃度對比度,標的物和假體相對的尺寸比)所造成的影響去做討論。分析所得結論,可用以預測使用此一斷層掃描系統在真實組織下進行量測時,可能的診斷極限,也可提供醫生使用此系統在醫療診斷上之瞭解。
    研究中,當NIR 光源位置在絕對座標0 度時,對一個標的物的非均質人造假體進行探討。分析結果可以發現
    􀁺
    當標的物濃度大時,對標的物位置偏移變化時可以有效的辨別出;但對標的
    物和實體相對的尺寸做變化時,不易辨別出此變化。
    􀁺
    當標的物位置在不深的情況下,對標的物濃度做變化時和標的物尺寸做變化
    時,可以辨別出其中的變化。
    􀁺
    當標的物的尺寸大時,對標的物濃度做變化時,可以辨別出此變化;但對標
    的物位置偏移的變化不容易辨別出。
    此外當NIR 光源位置在絕對座標0 度時,對兩個標的物 (I0 和I4)的非均質人造假體進行探討。分析結果可以發現
    􀁺
    當標的物0 (I0)的濃度大時,對標的物0 (I0)的位置偏移變化時可以辨別出。
    􀁺
    當標的物0 (I0)位置在不深的情況下,對標的物0 (I0)的濃度變化時可以辨別出,不過是當標的物4 (I4)的濃度小的情況下才成立。
    綜合一個標的物和兩個標的物的非均質人造假體分析結果,可以發現當NIR光源位置在0 度和180 度時,對標的物偏移量和標的物和實體濃度對比度的分析結果很類似。本文也利用指數形式的方程式模擬光在介質中的能量分佈,並和實驗人造假體所得的能量分佈做比較討論。


    Near infrared (NIR) diffuse optical tomography (DOT) is a new medical imaging modality, the advantages are safe (longer wavelength) and non-radioactive, in spite of its low spatial resolution at the current phase. Due to the diagnostic potential of NIR,the abnormality of tissues in NIR light is to allow earlier detection rather than most other imaging modalities. This thesis describes the NIR Electro-optical measurement for Intralipid phantoms using our own developed NIR DOT scanning
    instrument with highly spatially angular resolution, in order to investigate the
    influence of different factors such as the off-boundary, the volume density (v.d.) of
    inclusion, and the size ratio. The influence of each condition also can reveal the real
    condition of biomedical tissue, and this information can offer the doctor for diagnosis.
    This thesis discusses Intralipid phantoms which are the homogeneous background
    with one inclusion or two inclusions.
    For the homogeneous background with one inclusion and the source position at s0 , the contrast is large, the resolution of inclusion position is good but the resolution of inclusion size is bad. The off-boundary is small, the resolution of contrast and inclusion size are both good. The inclusion size is large, the resolution of contrast is good but the resolution of off-boundary is bad.
    For the homogeneous background with two inclusions and the source position at s0 , the contrast (I0) is large; the resolution of inclusion position is good. The off-boundary (I0) is small confined to the non-directly detected inclusion (I4) with small v.d.; the resolution of contrast is good. The common conclusion for the homogeneous background with one inclusion and two inclusions can be obtained.
    Those phenomena are similar in some condition, especially for source position at s0 and Sπ.
    This thesis also simulates a power curve by using an exponential form. The light trajectory of model in this thesis was set as straight line, unlike the real trajectory. The outcome does not seem well. From this thesis, it can give a general concept about the influence of different factors. Furthermore, the original experimental data can be used as the input and the calibration of image reconstruction.

    Contents CHAPTER 1 INTRODUCTION…………………………………1 1.1 Motivation……………………………………………1 1.2 Literature Review…………………………………3 1.3 Overview of the Thesis…………………………10 CHAPTER 2 OPTICAL PROPERTY OF BIOMEDICAL TISSUE………………………………………………12 2.1 Optical Properties………………………………12 2.1.1 Absorption………………………………………13 2.1.2 Scattering………………………………………14 2.1.3 Anisotropy………………………………………15 2.1.4 Refractive index………………………………16 2.2 Optical Properties of Interesting Object…16 2.2.1 Water………………………………………………16 2.2.2 Fat…………………………………………………17 2.2.3 Oxygenated and Deoxygenated Hemoglobin…17 2.2.4 Breast Tissue……………………………………18 2.3 Propagation of Photons…………………………19 CHPATER 3 INSTRUMENTATION……………………………20 3.1 Source-detector Geometry………………………20 3.1.1 Single point……………………………………20 3.1.2 Topography………………………………………21 3.1.3 Tomography………………………………………21 3.2 Types of Measuring Instrument…………………22 3.2.1 Continuous wave…………………………………22 3.2.2 Time domain………………………………………23 3.2.3 Frequency domain………………………………24 3.3 Experimental Equipments and Phantom Materials…………………………………………………24 3.3.1 Equipment…………………………………………25 3.3.2 Container…………………………………………27 3.3.3 Intralipid phantom……………………………27 3.3.4 Ink…………………………………………………28 3.4 Eccentric and Centering ………………………29 CHAPTER 4 EX P E R I M E N T S AN D DI S C U S S I O N S: H O M O G E N E O U S BACKGROUN D WITH ONE I N C L U S I O N…………………………………32 4.1 Size Ratio of Background to Inclusion 10:1………………………………………………………33 4.2 Size Ratio of Background to Inclusion 15:1………………………………………………………34 4.3 Definition on Attenuation Depth, Attenuation Width and Resolution…………………………………36 4.4 Attenuation Depth and Width v.s. Off-boundary…………………………………………………38 4.4.1 Conditions based on the same v.d…………39 4.4.2 Conditions based on the same size ratio…42 4.5 Attenuation Depth and Width v.s. Inclusion v.d.………………………………………………………45 4.5.1 Conditions based on the same off-boundary…………………………………………………46 4.5.2 Conditions based on the same size ratio.……………………………………………………………49 4.6 Attenuation Depth and Width v.s. Size Ratio………………………………………………………52 4.6.1 Conditions based on the same v.d…………………………………………………………53 4.6.2 Conditions based on the same off-boundary…………………………………………………55 4.7 Concluding Remark…………………………………59 CHAPTER 5 EX P E R I M E N T S AN D DI S C U S S I O N S: H O M O G E N E O U S B A C K G R O U N D W I T H T W O I N C L U S I O N S…………63 5.1 Attenuation Depth and Width v.s. Off-boundary of I0…………………………………………64 5.1.1 Conditions based on the same v.d. of I4…………………………………………………………66 5.1.2 Conditions based on the same v.d. of I0…………………………………………………………68 5.2 Attenuation Depth and Width v.s. Inclusion v.d. of I0………………………………………………71 5.2.1 Conditions based on the same v.d. of I4…………………………………………………………72 5.2.2 Conditions based on the same Off-boundary of I0………………………………………………………74 5.3 Concluding Remark…………………………………77 CHAPTER 6 SIMULATION…………………………………82 CHAPTER 7 CONCLUSIONS…………………………………90 REFERENCE…………………………………………………93 APPENDIX…………………………………………………99

    S. R. Arridge, and M. Schweiger, ”Direct Calculation of the Moments of the Distribution of Photon Time of Flight in Tissue with a Finite element Method ,” Applied Optics, Vol. 34, No. 15, pp. 2683-2687. (1995)
    S. R. Arridge, and M. Schweiger, ”Image Reconstruction in Optical Tomography, Philosophical Transactions:Biological Sciences, Vol. 352, No. 1354, pp.717-726. (1997)
    D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, ”Three Dimensional Monte Carlo Code for Photon Migration Through Complex Heterogeneous Media Including the Adult Human Head,” Optics Express, Vol. 10, No. 3, pp. 159-170. (2002)
    D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, ”Detection and Characterization of Optical Inhomogeneities with Diffuse Photon Density Waves: a Signal-to-noise Analysis,” Applied Optics, Vol. 36, No. 1, pp. 75-92. (1997)
    C. H. Chen, “Design/Implementation and Verification of NIR Electro-optical Measuring System for Medical Application,” M. Sc. thesis, National Central University. (2005)
    R. Choe, ”Diffuse Optical Tomography and Spectroscopy of Breast Cancer and Fetal Brain,” Ph.D thesis, University of Pennsylvania. (2005)
    J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G.Yodh, ”Diffuse Optical Tomography of Cerebral Blood Flow, Oxygenation, and Metabolism in Rat During Focal Ischemia,” Journal of Cerebral Blood Flow&Metabolism, Vol. 23, No. 8, pp. 911-924. (2003)
    J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, ”Optimization of Optode Arrangements for Diffuse Optical Tomography: A Singular-value Analysis,” Optics Letters, Vol. 26, No. 10, pp. 701-703. (2001)
    J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, ”Volumetric Diffuse Optical Tomography of Brain Activity,” Optics Letters, Vol. 28, No. 21, pp. 2061-2063. (2003)
    H. Dehghani, and D. T. Delpy, ”Near-infrared Spectroscopy of the Adult Head: Effect of Scattering and Absorbing Obstructions in the Cerebrospinal Fluid Layer on Light Distribution in the Tissue,” Applied Optics, Vol. 39, No. 25, pp.4721-4729. (2000)
    D. T. Delpy, and M. Cope, ”Quantification in Tissue Near-infrared Spectroscopy, Philosophical Transactions: Biological Sciences, Vol. 352, No. 1354, pp.649-659. (1997)
    J. C. Hebden, S. R. Arridge, and D. T. Delpy, ”Optical Imaging in Medicine: I. Experimental Techniques,” Physics in Medicine and Biology, Vol. 42, No. 16, pp. 825-840. (1997)
    E. M. C. Hillman, “Experimental and Theoretical Investigations of Near Infrared Tomographic Imaging Methods and Clinical Applications,” Ph.D. thesis, University College London. (2002)
    E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, ”Time Resolved Optical Tomography of the Human Forearm,” Physics in Medicine and Biology, Vol. 46, No. 16, pp. 1117-1130. (2001)
    W. H. Huang, “NIR Electro-optic Measurement for Pseudo-model of Biological Tissues,” M. Sc. thesis, National Central University. (2005)
    H. Jiang, K. D. Paulsen, and U. L. Osterberg, ”Optical Image Reconstruction Using DC Data: Simulations and Experiments,” Physics in Medicine and Biology, Vol. 41, No. 12, pp. 1483-1498. (1996)
    H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, ”Frequency-domain Optical Image Reconstruction in Turbid Media: an Experimental Study of Single-target Detectability,” Applied Optics, Vol. 36, No. 1, pp. 52-63. (1997)
    H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, ”Frequency-domain Near-infrared Photo Diffusion Imaging: Initial Evaluation in Multitarget Tissuelike Phantoms,” Medical Physics, Vol. 25, No. 2, pp. 183-193. (1998)
    M. Kohl, R. Watson, and M. Cope, “Determination of Absorption in Highly Scattering Media from Changes In Attenuation and Phase,” Optics Letters, Vol. 21, No. 18, pp. 1519-1521. (1996)
    T. O. McBride, “Spectroscopic Reconstructed Near Infrared Tomographic Imaging for Breast Cancer Diagnosis,” Ph.D. thesis, Dartmouth College. (2001)
    T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, ”A Parallel-detection Frequency-domain Near-infrared Tomography System for Hemoglobin Imaging of the Breast in vivo,” Review of Scientific Instruments,Vol. 72, No. 3, pp. 1817-1824. (2001)
    T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, and S. P. Poplack, ”Initial Studies of in vivo Absorbing and Scattering Heterogeneity in Near-infrared Tomographic Breast Imaging,” Optics Letters, Vol. 26, No. 11, pp. 822-824. (2001)
    V. Ntziachristos, ”Concurrent Diffuse Optical Tomography Spectroscopy and Magnetic Resonance Imaging of Breast and Cancer,” Ph.D thesis, University of Pennsylvania. (2000)
    V. Ntziachristos, B. Chance, and A. G. Yodh, ”Differential Diffuse Optical Tomography,” Optics Express, Vol. 5, No. 10, pp. 230-242,(1999)
    V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, ”Diffuse Optical Tomography of Highly Heterogeneous Media,” IEEE Transactions on Medical Imaging, Vol. 20, No. 6, pp. 470-478. (2001)
    V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, ”Concurrent MRI and Diffuse Optical Tomography of Breast After Indocyanine Green Enhancement,” Proceedings of the National Academy, Vol. 97, No. 6, pp.2767-2772. (2000)
    M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, ”Experimental Images of Heterogeneous Turbid Media by Frequency-domain Diffusing-photon Tomography,” Optics Letters, Vol. 20, No. 5, pp. 426-428. (1995)
    E. Okada, and D. T. Delpy, ”Near-infrared Light Propagation in an Adult Head Model.I. Modeling of Low-level Scattering in the Cerebrospinal Fluid Layer,”Applied Optics, Vol. 42, No. 16, pp. 3362-3371. (2003)
    E. Okada, and D. T. Delpy, ”Near-infrared Light Propagation in an Adult Head Model.II. Effect of Superficial Tissue Thickness on the Sensitivity of the Near-infrared Spectroscopy Signal,” Applied Optics, Vol. 42, No. 16, pp.2915-2922. (2003)
    E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, and D. T. Delpy, ”Experimental Validation of Monte Carlo and Finite-element Methods for the Estimation of the Optical Path Length in Inhomogeneous Tissue,” Applied Optics, Vol. 35, No. 19, pp. 3362-3371. (1996)
    K. D. Paulsen, and H. Jiang, “Spatially Varying Optical Property Reconstruction Using a Finite Element Diffusion approximation,” Medical Physics, Vol. 22, No. 6, pp. 691-701. (1996)
    K. D. Paulsen, B. W. Pogue, T. O. McBride, and U. L. Osterberg, ”Design and Testing of a Near-Infrared Computed Tomography Device for Breast Tumor Characterization,” Proceedings IEEE, pp. 1112. (1999)
    D. Passos, J. C. Hebden, P. N. Pinto, and R. Guerra, ”Tissue Phantom for Optical Diagnostics Based on a Suspension of Microspheres with a Fractal Size Distribution,” Journal of Biomedical Optics, Vol. 10, No. 6, pp.64036_1-64036_11. (2005)
    B. W. Pogue, E. A. Elizabeth, U. L. Osterberg, and K. D. Paulsen, ”Absorption of Opaque Microstructure in Optically Diffuse Media,” Applied Optics, Vol. 40, No. 25, pp. 4616-4621. (2001)
    B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, Characterization of Hemoglobin, Water, and NIR Scattering in Breast Tissue: Analysis of Intersubject Variability and Menstrual Cycle Changes,” Journal of Biomedical Optics, Vol.9, No. 3, pp. 541-552. (2004)
    B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, and T. Hasan, ”Absorbed Photodynamic Dose from Pulsed Versus Continuous Wave Light Examined with Tissue-simulating Dosimeters,” Applied Optics, Vol. 36, No. 28, pp.7257-7269. (1997)
    B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, ”Comparison of Imaging Geometries for Diffuse Optical Tomography of Tissue,” Optics Express, Vol. 4, No. 8, pp. 270-286. (1999)
    B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, ”Contrast-detail Analysis for Detection and Characterization with Near infrared Diffuse Tomography,” Medical Physics, Vol. 27, No. 12, pp. 2693-2700. (2000)
    B. W. Pogue, and K. D. Paulsen, ”High-resolution Near-infrared Tomographic
    Imaging Simulations of the Rat Cranium by Use of a Priori Magnetic Resonance Imaging Structural Information,” Optics Letters, Vol. 23, No. 21, pp. 1716-1718. (1998)
    B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, and K. D.Paulsen,"Statistical Analysis of Nonlinearly Reconstructed Near-InfraredTomographic Images: Part I—Theory and Simulations,” IEEE Transactionson Medical Imaging, Vol. 21, No. 7, pp. 755-763. (2002)
    B. W. Pogue, M. Testorf, T. O. McBride, U. L. Osterberg, and K. D.Paulsen, ”Instrumentation and Design of a Frequency-domain Diffuse Optical Tomography Imager for Breast Cancer Detection,” Optics Letters, Vol. 1, No.13, pp. 391-403.(1997)
    F. E. W. Schmidt, ”Development of a Time-Resolved Optical Tomography System for Neonatal Brain Imaging,” Ph.D. thesis, University College London. (1999)
    M. Schweiger, and S. R. Arridge, ”Direct Calculation with a Finite-element Method of the Laplace Transform of the Distribution of Photon Time of Flight in Tissue,”Applied Optics, Vol. 36, No. 34, pp. 9042-9049. (1997)
    M. Schweiger, and S. R. Arridge, ”Optical Tomographic Reconstruction in a Complex Head Model Using a priori Region Boundary Information,” Physics in Medicine and Biology, Vol. 44, No. 25, pp. 2703-2721. (1999)
    M. Schweiger, A. Gibson, and S. R. Arridge, ”Computational Aspects of Diffuse Optical Tomography,” IEEE Computer Society, pp. 33-41. (2003)

    QR CODE
    :::