| 研究生: |
周柏先 Po-Hsien Chou |
|---|---|
| 論文名稱: |
顆粒物質受束制壓力負載之力學分析 Mechanical Response of Granular Solid under Confined Compression |
| 指導教授: |
林志光
Chih-Kuang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 應力 、束制壓力負載實驗 、顆粒體 |
| 外文關鍵詞: | stress, confined compression test, granular material |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨在探討聚苯乙烯顆粒物質在壓克力容器中受頂部束制壓力負載之力學行為,並探討不同顆粒大小以及顆粒堆高度對於相關力學行為之影響。透過不同高度位置應變之量測及廣義虎克定律,探討顆粒堆之應力隨高度變化之情形。實驗用聚苯乙烯顆粒之直徑大小分別為 4.5 mm及6 mm,填充高度分別為100 mm及200 mm,藉以分析顆粒堆高度及顆粒大小對顆粒體受束制壓力負載力學響應之影響。另以商業用離散元素法分析軟體模擬6 mm直徑之顆粒填充於壓克力容器內200 mm 之高度所得到的計算結果與實驗數據相比對。
實驗結果顯示,在束制壓力負載過程中,不論顆粒大小以及顆粒填充之高度,隨著頂部力量值增加,顆粒體與壓克力容器之間之摩擦力也隨之增加。於過程中顆粒受壁面摩擦力之影響,顆粒堆內相關應力值由高處往低處遞減。在具有相同顆粒大小分別填充不同高度進行束制壓力負載下,較高填充高度的顆粒堆,其應力在頂部與底部之差距較大。將兩種不同顆粒大小分別填充相同高度,小顆粒於束制壓力負載時,顆粒堆上層部分之應力差距較大顆粒為明顯;而小顆粒於顆粒堆下層部分之應力差距相較於大顆粒為小。離散元素法模擬求得之顆粒體垂直應力與水平應力、壓克力壁面與顆粒體間之剪應力、側壓力係數以及整體壁面與顆粒摩擦係數皆與實驗之趨勢相符,因而證明模擬之結果之有效性。
The purpose of this study is to investigate the mechanical responses of polystyrene particles stored in acrylic cylinders with different particle sizes and heights of the granular solid during confined compression test. Variations of wall strains are measured using strain gages at three axial positions and used to calculate the relevant stresses through a generalized Hooke’s law. Two diameters of the polystyrene spheres, 4.5 mm and 6 mm, and two heights of the granular solid, 100 mm and 200 mm, are selected to study the effects of particle size and granular solid height on the confined compression test results. The experimental data of a 200-mm-height granular solid of 6-mm-diameter polystyrene spheres are compared with the simulations calculated by a commercial code of discrete element method (DEM).
Experimental results show that frictional force between the granular solid and the cylinder wall increases with the top force during the confined compression. The frictional force between the particles and the cylinder wall makes the stresses decrease with increasing depth in the granular solid. Given a particle size, the differences of the stresses between the higher position and the lower position in a higher granular solid are greater than those in a shorter granular solid. Given a height of granular solid stored in an acrylic cylinder, variation of the stresses at the upper position for smaller particles is larger than that for larger particles while variation of the stresses at the lower position for a smaller particle size is smaller than that of a larger particle size. DEM solutions show a good agreement with the experimental data of vertical stress, horizontal stress, shear stress, lateral pressure ratio, and bulk wall friction in a confined compression test.
REFERENCES
1. H. J. Herrmann, “Granular Matter,” Physica A, Vol. 313, pp. 188-210, 2002.
2. W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren, A. Kong, P. J. Narayan, and B. C. Hancock, “Granular Segregation in Discharging Cylindrical Hoppers: A Discrete Element and Experimental Study,” Chemical Engineering Science, Vol. 62, pp. 6423-6439, 2007.
3. A. J. Sadowski and J. M. Rotter, “Study of Buckling in Steel Silos under Eccentric Discharge Flows of Stored Solids,” Journal of Engineering Mechanics, Vol. 136, pp. 769-776, 2010.
4. K. Nasako, Y. Ito, N Hiro, and M. Osumi, “Stress on a Reaction Vessel by the Swelling of a Hydrogen Absorbing Alloy,” Journal of Alloys and Compounds, Vol. 264, pp. 271-276, 1998.
5. F. Qin, L. H. Guo, J. P. Chen, and Z. J. Chen, “Pulverization, Expansion of La0.6Y0.4Ni4.8Mn0.2 During Hydrogen Absorption-Desorption Cycle and Their Influences in Thin-Wall Reactors,” International Journal of Hydrogen Energy, Vol. 33, pp. 709-717, 2008.
6. Y. C. Chung and J. Y. Ooi, “Linking of Discrete Element Modelling with Finite Element Analysis for Analysing Structures in Contact with Particulate Solid,” Powder Technology, Vol. 217, pp. 107-120, 2012.
7. P. A. Cundall and O. D. L. Strack, “A Discrete Numerical-Model for Granular Assemblies,” Geotechnique, Vol. 29, pp. 47-65, 1979.
8. Y. C. Chung and J. Y. Ooi, “Benchmark Tests for Verifying Discrete Element Modelling Codes at Particle Impact Level,” Granular Matter, Vol. 13, pp. 643-656, 2010.
9. W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren, and B. C. Hancock, “Predicting the Flow Mode from Hoppers Using the Discrete Element Method,” Powder Technology, Vol. 195, pp. 1-10, 2009.
10. H. Tao, B. Jin, W. Q. Zhong, X. F. Wang, B. Ren, Y. Zhang, and R. Xiao, “Discrete Element Method Modeling of Non-Spherical Granular Flow in Rectangular Hopper,” Chemical Engineering and Processing: Process Intensification, Vol. 49, pp. 151-158, 2010.
11. C. C. Kwan, H. Mio, Y. Q. Chen, Y. L. Ding, F. Saito, D. G. Papadopoulos, A. C. Bentham, and M. Ghadiri, “Analysis of the Milling Rate of Pharmaceutical Powders Using the Distinct Element Method (DEM),” Chemical Engineering Science, Vol. 60, pp. 1441-1448, 2005.
12. P. W. Cleary, M. D. Sinnott, and R. D. Morrison, “Is Media Shape Important for Grinding Performance in Stirred Mills?,” Minerals Engineering, Vol. 24, pp. 138-151, 2011.
13. K. W. Chu, B. Wang, A. B. Yu, and A. Vince, “CFD-DEM Modelling of Multiphase Flow in Dense Medium Cyclones,” Powder Technology, Vol. 193, pp. 235-247, 2009.
14. S. E. Naeini and J. K. Spelt, “Two-Dimensional Discrete Element Modeling of a Spherical Steel Media in a Vibrating Bed,” Powder Technology, Vol. 195, pp. 83-90, 2009.
15. J. Wiącek, M. Molenda, J. Horabik, and J. Y. Ooi, “Influence of Grain Shape and Intergranular Friction on Material Behavior in Uniaxial Compression: Experimental and DEM Modeling,” Powder Technology, Vol. 217, pp. 435-442, 2009.
16. A. Munjiza, The Combined Finite-Discrete Element Method, John Wiley & Sons Ltd., London, UK, 2004.
17. K. Han, D. Peric, A. J. L. Crook, and D. R. J. Owen, “A Combined Finite/Discrete Element Simulation of Shot Peening Processes–Part I: Studies on 2D Interaction Laws,” Engineering Computations, Vol. 17, pp. 593-619, 2000.
18. K. Han, D. Peric, D. R. J. Owen, and J. Yu, “A Combined Finite/Discrete Element Simulation of Shot Peening Processes—Part II: 3D Interaction Laws,” Engineering Computations, Vol. 17, pp. 680-702, 2000.
19. A. Munjiza, T. Bangash, and N. W. M. John, “The Combined Finite-Discrete Element Method for Structural Failure and Collapse,” Engineering Fracture Mechanics, Vol. 71, pp. 469-483, 2004.
20. S. A. Masroor, L. W. Zachary, and R. A. Lohnes, “A Test Apparatus for Determining Elastic Constants of Bulk Solids,” pp. 553-558 in Proceedings of the 1987 SEM Spring Conference on Experimental Mechanics, Houston, Texas, USA, June 14-19, 1987.
21. Y. C. Chung and J. Y. Ooi, “Influence of Discrete Element Model Parameters on Bulk Behavior of a Granular Solid under Confined Compression,” Particulate Science and Technology, Vol. 26, pp. 83-96, 2008.
22. D. McGlinchey, Bulk Solids Handling: Equipment Selection and Operation, Blackwell Publishing Ltd., Oxford, UK, 2008.
23. eFunda, Inc., PMMA, http://www.efunda.com/materials/polymers/ (accessed 05.10.12).
24. W. T. Nakayama, D. R. Hall, D. E. Grenoble, and J. L. Katz, “Elastic Properties of Dental Resin Restorative Materials,” Journal of Dental Research, Vol. 53, pp. 1121-1126, 1974.
25. Engineering ToolBox, Polystyrene, http://www.engineeringtoolbox.com/ (accessed 05.17.12).
26. H. A. Janssen, “On the Pressure of Grain in Silos,” Proceedings of the Institution of Civil Engineers, Vol. 124, pp. 553-555, 1896.
27. Y. Tsuji, E. Tanaka, and T. Ishida, “Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe,” Powder Technology, Vol. 71, pp. 239-250, 1992.
28. Y. C. Chung and J. Y. Ooi, “A Study of Influence of Gravity on Bulk Behaviour of Particulate Solid,” Particuology, Vol. 6, pp. 467-474, 2008.
29. J. M. Rotter, J. Holst, J. Y. Ooi, and A. M. Sanad, “Silo Pressure Predictions Using Discrete-Element and Finite-Element Analyses,” Physical and Engineering Sciences, Vol. 356, pp. 2685-1712, 1998.